首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Starvation for 6 days reduced whole body mass and total body lipids to 76 and 71%, respectively, of pre-starvation levels in weight-gain phase ground squirrels. After 4 days of refeeding, body mass increased to 86% of pre-starvation level but total body lipids had not changed from starvation levels. 2. Compared to the fed state, fatty acid synthetase (FAS) activity in white adipose tissue (WAT) was 15 and 31% in starved and refed 4-day animals, respectively, and in liver was 26 and 21% in starved and refed 4-day animals, respectively. Lipids depleted by starvation during prehibernatory fattening were not rapidly restored in Richardson's ground squirrels. 3. Changes in these parameters with starvation and refeeding were similar in weight-loss phase animals. 4. In control animals of both phases, WAT accounted for at least 90% of total FAS activity and liver nearly all of the remainder.  相似文献   

2.
1. Glycogen concentrations in Richardson's ground squirrels of the weight-loss phase were 1/4-1/2 those in animals of the weight-gain phase. White adipose lipid content was similar in animals in the two phases when total body weight was similar. 2. Specific activity of 14C in muscle glycogen of fed, starved and refed ground squirrels in the weight-loss phase was similar to that in starved weight-gain phase animals. Activity in adipose lipids of fed, starved, and refed ground squirrels in the weight-gain phase was 5-8 times greater than that in the same nutritional states in weight-loss phase animals. 3. In addition to a voluntary reduction in food intake, a depressed synthetic activity in lipids and glycogen may account in part for the rapid decrease in body weight during the weight-loss phase of the circannual cycle.  相似文献   

3.
The lipogenic rate of the obese rats was significantly higher than that of the lean rats in liver, white adipose tissue, skeletal muscle, heart and carcass. In the lean rats, a 24 h starvation period caused a significant decrease in the lipogenic rate of white adipose tissue and skeletal muscle while it increased that of heart, brain and brown adipose tissue. In the obese rats, starvation decreased the lipogenic rate in liver, skeletal muscle, white adipose tissue, brown adipose tissue and carcass. In spite of this, liver and skeletal muscle showed higher rates of lipid synthesis than the corresponding fed lean. It is concluded that starvation induces a qualitatively similar response in the obese versus the lean rat although the total lipogenic capacity of the animal is still higher.  相似文献   

4.
Effects of starvation and refeeding on elastase-induced emphysema   总被引:1,自引:0,他引:1  
Adult rats received pancreatic elastase (75 U/100 g) intratracheally and were divided into three groups: fed, starved, and refed. Starved rats received one-third of their measured daily food consumption until they lost 40% body weight. The refed group was fed after 40% weight loss. A control group received saline intratracheally. Saline volume-pressure curve was shifted more significantly to the left of the control group in starved than in fed rats and was superimposed in refed and fed groups. Mean linear intercept was larger and alveolar surface area was smaller in starved than in fed rats compared with the control group; both were similar in fed and refed rats. Protein and hydroxyproline content of the lung were higher in fed than in control and in starved groups; after refeeding these returned to the control values. We conclude that starvation aggravates elastase-induced injury and that refeeding results in the complete recovery of the mechanical but only partial recovery of the morphometric changes induced by starvation.  相似文献   

5.
Triacylglycerol/fatty acid substrate cycling was measuredin vivo in brown adipose tissue (BAT) and white adipose tissue (WAT) of fed, starved and refed rats. Starvation (24 h) significantly decreased the rate of cycling in BAT, and refeeding chow diet led to a rapid, 6-fold increase in cycling. Cycling rate in WAT was much lower than in BAT, and was not influenced by fasting or refeeding. Similar rates of cycling were found in epididymal, mesenteric, subcutaneous, and scapular WAT depots. Sympathetic denervation of interscapular BAT abolished the response of the tissue to refeeding, as did acute suppression of insulin secretion. Similarly, rats fasted for 3 days showed no acute increase in the activity of the cycle following refeeding.  相似文献   

6.
Saithe (Pollachius virens L.) were starved for 66 days at 10 degrees C and activities of aryl sulfatase, acid proteinase, beta-glucuronidase, RNAase and acid phosphatase measured in homogenates prepared from fast and slow myotomal muscles. In fed fish, hydrolase activities were generally higher in slow than fast muscles. With the exception of acid proteinase activity in slow muscle, the activities of all the lysosomal enzymes increased by 70 to 100% during starvation. In general, there was a proportionally larger increase in the hydrolase activities in fast than in slow muscle. In a second experiment, fish were starved for 74 days, and refed for up to 52 days. The increases in aryl sulfatase and acid proteinase activity produced in fast muscle with starvation were found to be rapidly reversed by refeeding. Lysosomal enzyme activities in fish sampled after 10 days refeeding were not significantly different from fed controls. Membrane fractions enriched in aryl sulfatase activity were prepared from the fast muscle of 66-day starved fish. These were capable of degrading both myosin heavy chains and actin to lower molecular weight peptides at acid (pH 5.0), but not at neutral pH. The results suggest a role for lysosomal enzymes in the breakdown of myofibrillar proteins during starvation.  相似文献   

7.
1. The effects of starvation and refeeding on the disposal of oral [14C]triolein between 14CO2 production and 14C-lipid accumulation in tissues of virgin rats, lactating rats and lactating rats with pups removed were studied. 2. Starvation (24 h) increased 14CO2 production in lactating rats and lactating rats with pups removed to values found in virgin rats. This increase was accompanied by decreases in 14C-lipid accumulation in mammary gland and pups of lactating rats and in white and brown adipose tissue of lactating rats with pups removed. 3. Short-term (2 h) refeeding ad libitum decreased 14CO2 production in lactating rats and lactating rats with pups removed, and restored the 14C-lipid accumulation in mammary glands plus pups and in white and brown adipose tissue respectively 4. Insulin deficiency induced with mannoheptulose inhibited the restoration of 14C-lipid accumulation in white adipose tissue on refeeding of lactating rats with pups removed, but did not prevent the restoration of 14C-lipid accumulation in mammary gland. 5. Changes in the activity of lipoprotein lipase in mammary gland and white adipose tissue paralleled the changes in 14C-lipid accumulation in these tissues. 6. It is concluded that 14C-lipid accumulation in mammary gland may not be affected by changes in plasma insulin concentration and that it is less sensitive to starvation than is lipogenesis or lactose synthesis. This has the advantage that the milk lipid content can still be maintained from hepatic very-low-density lipoprotein for a period after withdrawal of food. The major determinant of the disposal of oral 14C-triolein appears to be the total tissue activity of lipoprotein lipase. When this is high in mammary gland (fed lactating rats) or white adipose tissue (fed lactating rats with pups removed), less triacylglycerol is available for the muscle mass and consequently less is oxidized.  相似文献   

8.
Here, we study a cycle of long-term starvation followed by refeeding in relation to the kinetics of serine dehydratase (SerDH) and tyrosine aminotransferase (TyrAT) in rainbow trout (Oncorhynchus mykiss). We determine SerDH- and TyrAT- specific activity at different substrate concentrations in liver and white muscle of juvenile trout starved for 70 days and then refed for 6 hr, 32 hr, 4 days, and 9 days. SerDH showed a hyperbolic kinetic with a K(m) for L-serine of 77.07+/-8.78 mM in the liver of control trout. After 70 days of starvation, the SerDH activity at saturate substrate concentration rose 100% over control. No significant changes were found in the K(m) values of the enzyme. After refeeding, the SerDH activity declined to control values. TyrAT also showed a hyperbolic kinetic with a K(m) for L-tyrosine of 1.86+/-0.12 and 2.55+/-0.57 mM in liver and white muscle, respectively. In starved trout, TyrAT activity in liver and white muscle was about 64 and 267%, respectively, higher than control. After 9 days of refeeding, the control values recovered, although, at 6 hr of refeeding, hepatic TyrAT activity was higher than that for starvation. This work shows that SerDH and TyrAT are present in rainbow trout and that the two enzymes have regulatory functions in the catabolism of their respective amino acids in this species.  相似文献   

9.
Obese-hyperglycaemic mice and lean mice were injected with dichloroacetate to determine the significance of gluconeogenesis in maintaining the hyperglycaemia of obese mice and to investigate the effects of a fall in blood glucose on fatty acid synthesis. One hour after the second of two, hourly, injections of dichloroacetate the blood glucose concentrations in fed and starved lean mice were decreased, whereas in obese mice they were sharply increased. In obese and lean mice, both fed and starved, dichloroacetate decreased plasma lactate but insulin was unchanged. The quantity of liver glycogen was decreased in all dichloroacetate treated mice, with the largest falls in fed and starved obese mice, which had much larger glycogen stores than lean mice. Dichloroacetate treatment decreased the concentration of plasma non-esterified fatty acids in fed and starved obese mice and fed lean mice but not in starved lean mice. Fatty acid synthesis in white (inguinal, subcutaneous) adipose tissue was stimulated by dichloroacetate in fed obese mice and inhibited in fed lean mice. Fatty acid synthesis in brown adipose tissue (scapular) was faster than in white adipose tissue and was less affected by dichloroacetate although the changes were in the same direction as in white adipose tissue. We attribute the increased hyperglycaemia of obese mice treated with dichloroacetate to increased glycogenolysis coupled with a failure to secrete additional insulin in response to the raised blood glucose. This high blood glucose concentration in dichloroacetate treated obese mice may in turn explain the increased fatty acid synthesis in their white adipose tissue.  相似文献   

10.
The SREBP-1c mRNA level and precursor (microsomal) form of SREBP-1 abundance were significantly higher in epididymal and perirenal than in subcutaneous white adipose tissue of control rats. Moreover, the SREBP-1c mRNA level and an amount of precursor form of SREBP-1 were significantly higher in the epididymal and perirenal white adipose tissue of rats maintained on restricted diet and refed ad libitum for 48 h as compared to the control animals. No significant effects of food restriction/refeeding on SREBP-1c mRNA level and an amount of precursor form of SREBP-1 were found in subcutaneous white adipose tissue. The mature (nuclear) form of SREBP-1 was significantly increased in the epididymal, perirenal and subcutaneous white adipose tissue of the food restricted/refed animals. The activity, protein level and the mRNA abundance of malic enzyme (one of the target genes for SREBP-1) increased significantly in the epididymal, perirenal and subcutaneous white adipose tissue of the food restricted/refed rats as compared to the control animals, however the increase in perirenal and epididymal was higher than in the subcutaneous white adipose tissue. The results presented suggest that SREBP-1c is differently expressed in various rat white adipose tissue depots both under basal (control) and dieting conditions.  相似文献   

11.
Effects of fasting and refeeding on the hepatic tyrosine aminotransferase activity were examined in rats that had been fed during the night. The tyrosine aminotransferase activity showed clear diurnal variations, with a maximal activity after the feeding time. The tyrosine aminotransferase rhythm persisted even under starvation, though the amplitude decreased remarkably. When the starved rats were refed at night, the tyrosine aminotransferase activity increased rapidly to a high level, but it increased slowly to a rather lower level when they were refed in daytime.  相似文献   

12.
Responses of the hepatic lipogenic enzymes, glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and malic enzyme (ME) to starvation refeeding and diet shifting were determined in lean and obese female Zucker rats. Rats were either fed nonpurified diet, starved 48 hr, and then refed nonpurified diet or one of the refined carbohydrate diets containing either glucose, fructose, cornstarch, or sucrose for 72 hr, or shifted from nonpurified diet directly to one of the refined carbohydrate diets for 72 hr. Initial activities were greater in obese than lean rats for all three enzymes studied. Similar to other strains of female rats, lean Zucker rats failed to demonstrate a starve-refeed response when refed nonpurified diet. Obese female littermates showed a statistically significant increase in enzymes when refed a nonpurified diet. Both lean and obese female Zucker rats demonstrated increases in enzyme activities above controls when starved and refed any of the refined carbohydrate diets. The greatest responses were observed when female rats were starved and refed sucrose; activities increased 2.6- to 3.5-fold in lean and 3.0- to 4.3-fold in obese Zuckers. In lean females 50-70% of the starve-refeed response observed with G6PDH and ME can be accounted for by simply shifting from a nonpurified diet to the respective refined carbohydrate diet, whereas in obese females only 33-55% of the increase could be attributed to diet shifting. Plasma testosterone/estrogen ratios were consistently 1.5 times higher in obese than in lean female rats. This phenotypic difference may potentiate the heightened starve-refeed overshoot response observed in obese rats.  相似文献   

13.
Restricting food intake to a level below that consumed voluntarily (85%, 70% and 50% of the ad libitum energy intake for 3 or 30 days) and re-feeding ad libitum for 48 h results in an increase of malic enzyme (ME) gene expression in rat white adipose tissue. The increase of ME gene expression was much more pronounced in rats maintained on restricted diet for 30 days than for 3 days. The changes in ME gene expression resembled the changes in the content of SREBP-1 in white adipose tissue. A similar increase of serum insulin concentration was observed in all groups at different degrees of caloric restriction and refed ad libitum for 48 h. Caloric restriction and refeeding caused on increase of ME activity also in brown adipose tissue (BAT) and liver. However, in liver a significant increase of ME activity was found only in rats maintained on the restricted diet for 30 days. No significant changes after caloric restriction and refeeding were found in heart, skeletal muscle, kidney cortex, and brain. These data indicate that the increase of ME gene expression after caloric restriction/refeeding occurs only in lipogenic tissues. Thus, one can conclude that caloric restriction/refeeding increases the enzymatic capacity for fatty acid biosynthesis.  相似文献   

14.
Long-term food restriction (85%, 70% and 50% of ad libitum energy intake for one month) induced a substantial fall in serum leptin concentration and leptin mRNA levels in epididymal white adipose tissue in rats. Surprisingly, this suppression was not reversed by refeeding ad libitum for 48 h. The reduction in serum leptin concentration and leptin mRNA level did not strictly correlate with reduction in fat or body mass. Unlike serum leptin concentration and epididymal adipose tissue leptin mRNA levels, fatty acid synthase activity, fatty acid synthase protein abundance and fatty acid synthase mRNA levels increased significantly in white adipose tissue after refeeding rats subjected to food restriction. The increase in serum insulin concentration was observed in all groups on different degrees of food restriction and refed ad libitum for 48 h compared to controls. A decrease in serum insulin concentration was found in the rats not refed before sacrifice. Long-term food restriction did not significantly affect serum glucose concentrations in either refed or non-refed rats. The data reported in this paper indicate that there is no rapid rebound in serum leptin concentration or leptin gene expression in contrast to the increase in serum insulin concentration and fatty acid gene expression in white adipose tissue of rats refed ad libitum after one month's food restriction.  相似文献   

15.
Mammalian hibernation requires an extensive reorganization of metabolism that typically includes a greater than 95% reduction in metabolic rate, selective inhibition of many ATP-consuming metabolic activities and a change in fuel use to a primary dependence on the oxidation of lipid reserves. We investigated whether the AMP-activated protein kinase (AMPK) could play a regulatory role in this reorganization. AMPK activity and the phosphorylation state of multiple downstream targets were assessed in five organs of thirteen-lined ground squirrels (Spermophilus tridecemlineatus) comparing euthermic animals with squirrels in deep torpor. AMPK activity was increased 3-fold in white adipose tissue from hibernating ground squirrels compared with euthermic controls, but activation was not seen in liver, skeletal muscle, brown adipose tissue or brain. Immunoblotting with phospho-specific antibodies revealed an increase in phosphorylation of eukaryotic elongation factor-2 at the inactivating Thr56 site in white adipose tissue, liver and brain of hibernators, but not in other tissues. Acetyl-CoA carboxylase phosphorylation at the inactivating Ser79 site was markedly increased in brown adipose tissue from hibernators, but no change was seen in white adipose tissue. No change was seen in the level of phosphorylation of the Ser565 AMPK site of hormone-sensitive lipase in adipose tissues of hibernating animals. In conclusion, AMPK does not appear to participate in the metabolic re-organization and/or the metabolic rate depression that occurs during ground squirrel hibernation.  相似文献   

16.
Intraperitoneal administration of [1,2-14C]-acetate to Wistar rats was used to assess tissue lipogenic rates after estimating the incorporation of the label into the tissular lipid fractions. Refeeding the animals with glucose (after an overnight fast) induced an increase in white adipose tissue (4.5 fold), liver (4.1 fold), small intestine (1.9 fold), carcass (2.9 fold) and spleen (3.7 fold) lipogenesis (expressed as the radioactivity present in the lipid fraction corrected by the plasma circulating radioactivity). No changes were found following refeeding in either brain or brown adipose tissue. Administration of mannoheptulose (an inhibitor of insulin secretion) to refed rats completely abolished the increased lipogenesis in white adipose tissue, liver, carcass, spleen and small intestine, thus suggesting that insulin secretion is involved in this phenomenon. This is the first report showing that spleen lipogenesis may be modulated by refeeding via insulin secretion and suggests an important role of this organ on the in vivo lipogenic response of the organism after carbohydrate refeeding. (Mol Cell Biochem 175: 149–152, 1997)  相似文献   

17.
1. Starvation of rats for 40 hr decreased the body weight, liver weight and blood glucose concentration. The hepatic and skeletal muscle glycogen concentrations were decreased by 95% (from 410 mumol/g tissue to 16 mumol/g tissue) and 55% (from 40 mumol/g tissue to 18.5 mumol/g tissue), respectively. 2. Fine structural analysis of glycogen purified from the liver and skeletal muscle of starved rats suggested that the glycogenolysis included a lysosomal component, in addition to the conventional phosphorolytic pathway. In support of this the hepatic acid alpha-glucosidase activity increased 1.8-fold following starvation. 3. Refeeding resulted in liver glycogen synthesis at a linear rate of 40 mumol/g tissue per hr over the first 13 hr of refeeding. The hepatic glycogen store were replenished by 8 hr of refeeding, but synthesis continued and the hepatic glycogen content peaked at 24 hr (approximately 670 mumol/g tissue). 4. Refeeding resulted in skeletal muscle glycogen synthesis at an initial rate of 40 mumol/g tissue per hr. The muscle glycogen store was replenished by 30 min of refeeding, but synthesis continued and the glycogen content peaked at 13 hr (approximately 50 mumol/g tissue). 5. Both liver and skeletal muscle glycogen synthesis were inhomogeneous with respect to molecular size; high molecular weight glycogen was initially synthesised at a faster rate than low molecular weight glycogen. These observations support suggestions that there is more than a single site of glycogen synthesis.  相似文献   

18.
Refeeding of starved rats that had previously been schedule-fed increased ornithine decarboxylase activity 140-fold in liver and six-fold in skeletal muscle within three hours. In diabetic rats, refeeding caused a smaller increase in enzyme activity in liver and none at all in muscle. When insulin was administered together with food to the diabetic rats, ornithine decarboxylase in muscle increased to levels greater than those observed in refed controls. The activity of the enzyme in liver also increased; however, the increase was still less than that observed in refed control rats. The data indicate that the induction of ornithine decarboxylase in liver and muscle following food ingestion is altered in diabetes. In addition, they suggest that insulin, or a factor dependent on insulin, modulates the activity of ornithine decarboxylase in skeletal muscle.  相似文献   

19.
This study investigated the influence of feeding frequency on the activities of important degradative enzymes and potentially rate-limiting enzymes in glycolysis and gluconeogenesis in the liver and white epaxial muscle of Macquaria ambigua . Adult animals were either fed daily to satiety (fed), deprived of food for up to 180 days (starved), or starved for 150 days then fed daily to satiety for 30 days (starved/fed). The activities of lipolytic, glycogenolytic and glycolytic enzymes in the livers of starved fish were maintained as long as liver energy stores were available, but became significantly reduced following their exhaustion indicating a decline in metabolism in response to prolonged starvation. The response of epaxial muscle metabolism to changes in food availability was different to that of the liver, as no significant change in the activities of muscle lipolytic or glycogenolytic enzymes were observed in response to starvation. Muscle tissue metabolism was reduced after 60–90 days of starvation, but then returned to prestarvation levels.  相似文献   

20.
Cycloplasmic preparations from brown and white adipose tissues were assayed for three lipogenic enzymes throughout a programme of starvation followed by refeeding on either a normal or a white-bread diet. In the brown adipose tissue of rats fed on a white-bread diet the three enzymes were elevated to levels significantly higher than those in white adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号