首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Professional Point of Care testing demands rapid analysis and professional quality. To assure rapid analysis of high quality the analytical tool ideally should be able to work without sample pre‐treatment and should offer the opportunity to calibrate and/or control the analytical performance of the tool. In contrast to an enormous number of different disposable‐strips used for patient self monitoring today and based on an extended knowledge with respect to multi‐way biosensors used in laboratory analyzers we decided to develop a professional Point of Care Testing system for glucose analysis based on a multi‐way biosensor. The multi‐way glucose biosensor placed in the instrument for 30 days did reduce the lag time between blood withdrawal and availability of a result of lab quality in a bedside area to about 10 seconds. No pre‐analytical steps are necessary for measuring capillary whole blood, no crossing over was observed, and the data could be transferred into a laboratory information system or a hospital information system. Thus, we were able to realize tools for professional health control able to measure glucose values in laboratory quality at places outside laboratories: e.g., in doctor's offices, hospital wards, critical care units, and training units of athletes. By combining the advantages of laboratory analyzers (high quality and low sample price) and the advantages of disposable strips (simple procedure and immediate results after sample withdrawal) with the Glukometer 3000 and LactatProfi 3000 we did start to fill the gap between the two basic technologies available on the market for diagnosis today. Glukometer 3000 and LactatProfi 3000 are worldwide the first and only mobile glucose and lactate measuring instruments for decentralized locations based on multi‐way biosensors.  相似文献   

3.
4.
5.
6.
7.
Plant breeders and variety testing agencies routinely test candidate genotypes (crop varieties, lines, test hybrids) in multiple environments. Such multi‐environment trials can be efficiently analysed by mixed models. A single‐stage analysis models the entire observed data at the level of individual plots. This kind of analysis is usually considered as the gold standard. In practice, however, it is more convenient to use a two‐stage approach, in which experiments are first analysed per environment, yielding adjusted means per genotype, which are then summarised across environments in the second stage. Stage‐wise approaches suggested so far are approximate in that they cannot fully reproduce a single‐stage analysis, except in very simple cases, because the variance–covariance matrix of adjusted means from individual environments needs to be approximated by a diagonal matrix. This paper proposes a fully efficient stage‐wise method, which carries forward the full variance–covariance matrix of adjusted means from the individual environments to the analysis across the series of trials. Provided the variance components are known, this method can fully reproduce the results of a single‐stage analysis. Computations are made efficient by a diagonalisation of the residual variance–covariance matrix, which necessitates a corresponding linear transformation of both the first‐stage estimates (e.g. adjusted means and regression slopes for plot covariates) and the corresponding design matrices for fixed and random effects. We also exemplify the extension of the general approach to a three‐stage analysis. The method is illustrated using two datasets, one real and the other simulated. The proposed approach has close connections with meta‐analysis, where environments correspond to centres and genotypes to medical treatments. We therefore compare our theoretical results with recently published results from a meta‐analysis.  相似文献   

8.
9.
10.
11.
The overall function of a multi‐domain protein is determined by the functional and structural interplay of its constituent domains. Traditional sequence alignment‐based methods commonly utilize domain‐level information and provide classification only at the level of domains. Such methods are not capable of taking into account the contributions of other domains in the proteins, and domain‐linker regions and classify multi‐domain proteins. An alignment‐free protein sequence comparison tool, CLAP (CLAssification of Proteins) was previously developed in our laboratory to especially handle multi‐domain protein sequences without a requirement of defining domain boundaries and sequential order of domains. Through this method we aim to achieve a biologically meaningful classification scheme for multi‐domain protein sequences. In this article, CLAP‐based classification has been explored on 5 datasets of multi‐domain proteins and we present detailed analysis for proteins containing (1) Tyrosine phosphatase and (2) SH3 domain. At the domain‐level CLAP‐based classification scheme resulted in a clustering similar to that obtained from an alignment‐based method. CLAP‐based clusters obtained for full‐length datasets were shown to comprise of proteins with similar functions and domain architectures. Our study demonstrates that multi‐domain proteins could be classified effectively by considering full‐length sequences without a requirement of identification of domains in the sequence.  相似文献   

12.
We demonstrate simultaneous multi‐site two‐photon photolysis of caged neurotransmitters with close to diffraction‐limited resolution in all three dimensions (3D). We use holographic projection of multiple focal spots, which allows full control over the 3D positions of uncaging sites with a high degree of localized excitation. Our system incorporates a two‐photon imaging setup to visualize the 3D morphology of the neurons in order to accurately determine the photostimulation sites. We show its application to studies of synaptic integration by performing simultaneous and controlled glutamate delivery at multiple locations on dendritic trees. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
Abstract. We present a remote sensing based vegetation mapping technique well suited to a heterogeneous, semi‐arid environment. 10 structural vegetation classes were identified and described on the ground. Using Landsat‐TM from two different seasons and a combination of three conventional classification techniques (including a multi‐temporal classification) we were unsuccessful in delineating all of the desired vegetation classes. We then employed a simple tex‐tural classification index, known as the Moving Standard Deviation Index (MSDI), that has been used to map degradation status. MSDI measures spatial variations in the landscape and is calculated by passing a 3 × 3 standard deviation filter across the Landsat‐TM red band. High MSDI values are associated with degraded or disturbed rangelands whilst low MSDI values are associated with undisturbed rangeland. A combination of two conventional multi‐spectral techniques and MSDI were used to produce a final vegetation classification at an accuracy of 84 %. MSDI successfully discriminated between two contrasting vegetation types of identical spectral properties and significantly strengthened the accuracy of the classification. We recommend the use of a tex‐tural index such as MSDI to supplement conventional vegetation classification techniques in heterogeneous, semi‐arid or arid environments.  相似文献   

15.
Recent evidence suggests that marker‐based heterozygosity‐fitness correlations may be driven by only one or a few markers, indicating local heterozygosity effects caused by linkage disequilibrium with functional genes. In this study, we investigated the relationship between microsatellite heterozygosity and a measure of cell‐mediated immunity (phytohaemagglutinin; PHA) in bluethroat (Luscinia s. svecica) nestlings using a full‐sibling design. We found significant positive associations between PHA response and two different indices of microsatellite heterozygosity, i.e. multi‐locus heterozygosity and mean d2. However, model comparisons disclosed that both associations were more likely caused by local effects rather than general effects and that the two local effects appeared to be realized through two different genetic mechanisms. Our results indicate that both the random assortment of parental chromosomes during meiosis as well as inbreeding can drive heterozygosity‐fitness correlations.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号