首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Genome‐wide association studies (GWAS) have been widely applied to disentangle the genetic basis of complex traits. In cattle breeds, classical GWAS approaches with medium‐density marker panels are far from conclusive, especially for complex traits. This is due to the intrinsic limitations of GWAS and the assumptions that are made to step from the association signals to the functional variations. Here, we applied a gene‐based strategy to prioritize genotype–phenotype associations found for milk production and quality traits with classical approaches in three Italian dairy cattle breeds with different sample sizes (Italian Brown = 745; Italian Holstein = 2058; Italian Simmental = 477). Although classical regression on single markers revealed only a single genome‐wide significant genotype–phenotype association, for Italian Holstein, the gene‐based approach identified specific genes in each breed that are associated with milk physiology and mammary gland development. As no standard method has yet been established to step from variation to functional units (i.e., genes), the strategy proposed here may contribute to revealing new genes that play significant roles in complex traits, such as those investigated here, amplifying low association signals using a gene‐centric approach.  相似文献   

2.
    
Selection for increased litter size in swine has potentially resulted in a correlated increase in preweaning mortality. Additional selection criteria should be considered when selecting for increased litter size to account for associated decreases in piglet quality, specifically piglet survival, initial weight and growth. Traits such as gestation length (GL), which have been associated with piglet performance, could be utilized to improve piglet development and survivability. The objective of this study was to conduct a genome‐wide association study to identify genomic regions associated with GL in differing parities in swine (= 831) from the University of Nebraska–Lincoln reproductive longevity project. Gestation length was calculated as the number of days between last insemination administered and farrowing. Sows were genotyped with the Illumina SNP60 BeadArray, and the data were analyzed using Bayesian mixture models for GL at parity 1, 2, 3 and 4 (GL1, GL2, GL3 and GL4 respectively). Means (SD) for GL1–GL4 were 113 (1.4), 114 (1.2), 114 (1.3) and 115 (1.2) respectively. Posterior mean heritability estimates (PSD) for GL1, GL2, GL3 and GL4 were 0.33 (0.06), 0.34 (0.07), 0.32 (0.08) and 0.20 (0.08) respectively. Rank correlations between genomic estimated breeding values between GL1 and GL2, GL3 and GL4 respectively were moderate: 0.67, 0.65 and 0.60. The top SNP (ASGA0017859, SSC4, 7.8 Mb), located in the top common genomic region associated with GL1, GL2 and GL3, was associated with a difference of 1.1 days in GL1 between homozygote genotypes (< 0.0001). The results of this study suggest that GL is a largely polygenic trait with relatively minor contributions from multiple genomic regions.  相似文献   

3.
    
Phenotypic variability in horn characteristics, such as their size, number and shape, offers the opportunity to elucidate the molecular basis of horn development. The objective of this study was to map the genetic determinant controlling the production of four horns in two breeds, Jacob sheep and Navajo‐Churro, and examine whether an eyelid abnormality occurring in the same populations is related. Genome‐wide association mapping was performed using 125 animals from the two breeds that contain two‐ and four‐horned individuals. A case–control design analysis of 570 712 SNPs genotyped with the ovine HD SNP Beadchip revealed a strong association signal on sheep chromosome 2. The 10 most strongly associated SNPs were all located in a region spanning Mb positions 131.9–132.6, indicating the genetic architecture underpinning the production of four horns is likely to involve a single gene. The closest genes to the most strongly associated marker (OAR2_132568092) were MTX2 and the HOXD cluster, located approximately 93 Kb and 251 Kb upstream respectively. The occurrence of an eyelid malformation across both breeds was restricted to polled animals and those carrying more than two horns. This suggests the eyelid abnormality may be associated with departures from the normal developmental production of two‐horned animals and that the two conditions are developmentally linked. This study demonstrated the presence of separate loci responsible for the polled and four‐horned phenotypes in sheep and advanced our understanding of the complexity that underpins horn morphology in ruminants.  相似文献   

4.
    
Colostrum intake is critical to a piglet's survival and can be measured by precipitating out the γ‐immunoglobulins from serum with ammonium sulfate (immunocrit). Genetic analysis of immunocrits on 5312 piglets indicated that the heritabilities (se) for direct and maternal effects were 0.13 (0.06) and 0.53 (0.08) respectively. To identify QTL for direct genetic effects, piglets with the highest and lowest immunocrits from 470 litters were selected. Six sets of DNA pools were created based on sire of the litter. These 12 DNA pools were applied to Illumina Porcine SNP60 BeadChips. Normalized X and Y values were analyzed. Three different SNP selection methods were used: deviation of the mean from high vs. low pools, the deviation adjusted for variance based on binomial theory and ANOVA. The 25 highest ranking SNPs were selected from each evaluation for further study along with 12 regions selected based on a five‐SNP window approach. Selected SNPs were individually genotyped in the 988 piglets included in pools as well as in 524 piglets that had intermediate immunocrits. Association analyses were conducted fitting an animal model using the estimated genetic parameters. Nineteen SNPs were nominally associated (< 0.01) with immunocrit values, of which nine remained significant (< 0.05) after Bonferroni correction, located in 16 genomic regions on 13 chromosomes. In conclusion, the pooling strategy reduced the cost to scan the genome by more than 80% and identified genomic regions associated with a piglet's ability to acquire γ‐immunoglobulin from colostrum. Each method to rank SNPs from the pooled analyses contributed unique validated markers, suggesting that multiple analyses will reveal more QTL than a single analysis.  相似文献   

5.
    
Footrot is one of the most important causes of lameness in global sheep populations and is characterized by a bacterial infection of the interdigital skin. As a multifactorial disease, its clinical representation depends not only on pathogen factors and environmental components but also on the individual resistance/susceptibility of the host. A genetic component has been shown in previous studies; however, so far no causative genetic variant influencing the risk of developing footrot has been identified. In this study, we genotyped 373 Swiss White Alpine sheep, using the ovine high‐density 600k SNP chip, in order to run a DNA‐based comparison of individuals with known clinical footrot status. We performed a case–control genome‐wide association study, which revealed a genome‐wide significant association for SNP rs418747104 on ovine chromosome 2 at 81.2 Mb. The three best associated SNP markers were located at the MPDZ gene, which codes for the multiple PDZ domain crumbs cell polarity complex component protein, also known as multi‐PDZ domain protein 1 (MUPP1). This protein is possibly involved in maintaining the barrier function and integrity of tight junctions. Therefore, we speculate that individuals carrying MPDZ variants may differ in their footrot resistance/susceptibility due to modified horn and interdigital skin integrity. In conclusion, our study reveals that MPDZ might represent a functional candidate gene, and further research is needed to explore its role in footrot affected sheep.  相似文献   

6.
    
The Icelandic horse is a breed known mainly for its ability to perform the ambling four‐beat gait ‘tölt’ and the lateral two‐beat gait pace. The natural ability of the breed to perform these alternative gaits is highly desired by breeders. Therefore, the discovery that a nonsense mutation (C>A) in the DMRT3 gene was the main genetic factor for horses' ability to perform gaits in addition to walk, trot and canter was of great interest. Although several studies have demonstrated that homozygosity for the DMRT3 mutation is important for the ability to pace, only about 70% of the homozygous mutant (AA) Icelandic horses are reported to pace. The aim of the study was to genetically compare four‐ and five‐gaited (i.e. horses with and without the ability to pace) AA Icelandic horses by performing a genome‐wide association (GWA) analysis. All horses (= 55) were genotyped on the 670K Axiom Equine Genotyping Array, and a GWA analysis was performed using the genabel package in r . No SNP demonstrated genome‐wide significance, implying that the ability to pace goes beyond the presence of a single gene variant. Despite its limitations, the current study provides additional information regarding the genetic complexity of pacing ability in horses. However, to fully understand the genetic differences between four‐ and five‐gaited AA horses, additional studies with larger sample materials and consistent phenotyping are needed.  相似文献   

7.
    
Genomic regions associated with coat color and pigmented areas of the head were identified for Fleckvieh (dual‐purpose Simmental), a red‐spotted and white‐headed cattle breed. Coat color was measured with a chromameter, implementing the CIELAB color space and resulting in numerical representation of lightness, color intensity, red/green and blue/yellow color components, rather than subjective classification. Single marker regression analyses with fixed effects of the sex and barn were applied, and significant regions were determined with the local false discovery rate methodology. The PMEL and ERBB3 genes on chromosome 5 were in the most significant region for the color measurements. In addition to the blue/yellow color component and color intensity, the AP3B2 gene on chromosome 21 was identified. Its function was confirmed for similar traits in a range of model species. The KIT gene on chromosome 6 was found to be strongly associated with the inhibition of circum‐ocular pigmentation and pigmented spots on the cheek.  相似文献   

8.
    
Polyceraty (presence of multiple horns) is rare in modern day ungulates. Although not found in wild sheep, polyceraty does occur in a small number of domestic sheep breeds covering a wide geographical region. Damara are fat‐tailed hair sheep, from the south‐western region of Africa, which display polyceraty, with horn number ranging from zero to four. We conducted a genome‐wide association study for horn number with 43 Damara genotyped with 606 006 SNP markers. The analysis revealed a region with multiple significant SNPs on ovine chromosome 2, in a location different from the mutation for polled in sheep on chromosome 10. The causal mutation for polyceraty was not identified; however, the region associated with polyceraty spans nine HOXD genes, which are critical in embryonic development of appendages. Mutations in HOXD genes are implicated in polydactly phenotypes in mice and humans. There was no evidence for epistatic interactions contributing to polyceraty. This is the first report on the genetic mechanisms underlying polyceraty in the under‐studied Damara.  相似文献   

9.
    
Explicitly fitting effects for major genes or QTL that account for a large percentage of variation in a whole genomic prediction model may increase prediction accuracy. This study compared approaches to account for a major effect of an F94L variant in the MSTN gene within the genomic prediction using bovine whole‐genomic SNP markers. Among the beef cattle breeds, Limousin have been known to have an F94L variant that is not present in Angus. The reference population in this study consisted of 3060 beef cattle including pure‐bred Limousin (PL), cross‐bred Limousin with Angus (LF) and pure‐bred Angus, genotyped using a BovineSNP50 BeadChip and directly for the MSTN‐F94L variant. We compared prediction accuracies in PL animals using the three datasets from only the PL population, admixed PL and LF (AL) or multibreed analysis using all of the PL, LF and Angus (MB) population according to four‐fold cross‐validation after K‐means clustering. The MSTN‐F94L variant was the most strongly associated with five traits (birth weight, calving ease direct, milk, weaning weight and yield grade) among the 13 measured traits in PL and AL populations. Fitting the MSTN‐F94L variant as a random effect, the genomic prediction accuracies for birth weight increased by 2.7% in PL, by 2.2% in AL and by 3.2% in MB. Prediction accuracies for five traits increased in the MB analysis. Fitting MSTN‐F94L as a fixed effect in PL, AL and MB analyses resulted in increased prediction accuracy in PL for eight traits. Prediction accuracies can be improved by including a causal variant in genomic evaluation compared with simply using whole‐genome SNP markers. Fitting the causal variant as a fixed effect along with markers fitted as random effects resulted in greater prediction accuracies for most traits. Causal variants should be genotyped along with SNP markers.  相似文献   

10.
    
A genome‐wide association scan for loci affecting withers height was conducted in 782 German Warmblood stallions, which were genotyped using the Illumina EquineSNP50 Bead Chip. A principal components approach was applied to correct for population structure. The analysis revealed a single major QTL on ECA3 explaining ~18 per cent of the phenotypic variance, which is in concordance with recent reports from other horse populations. The LCORL/NCAPG locus represents a strong candidate gene for this QTL. This locus is among a small number that have consistently been identified to influence human height in several large meta‐analyses. Furthermore, a mutation within the NCAPG gene was found to affect growth and body frame size in cattle. Together with the results of this study in German Warmbloods, these findings strongly indicate LCORL/NCAPG as a candidate locus for withers height in horses. Further studies are, however, needed to confirm this.  相似文献   

11.
    
Flowering time is an important factor affecting grain yield in wheat. In this study, we divided reproductive spike development into eight sub‐phases. These sub‐phases have the potential to be delicately manipulated to increase grain yield. We measured 36 traits with regard to sub‐phase durations, determined three grain yield‐related traits in eight field environments and mapped 15 696 single nucleotide polymorphism (SNP, based on 90k Infinium chip and 35k Affymetrix chip) markers in 210 wheat genotypes. Phenotypic and genetic associations between grain yield traits and sub‐phase durations showed significant consistency (Mantel test; = 0.5377, < 0.001). The shared quantitative trait loci (QTLs) revealed by the genome‐wide association study suggested a close association between grain yield and sub‐phase duration, which may be attributed to effects on spikelet initiation/spikelet number (double ridge to terminal spikelet stage, DR‐TS) and assimilate accumulation (green anther to anthesis stage, GA‐AN). Moreover, we observed that the photoperiod‐sensitivity allele at the Ppd‐D1 locus on chromosome 2D markedly extended all sub‐phase durations, which may contribute to its positive effects on grain yield traits. The dwarfing allele at the Rht‐D1 (chromosome 4D) locus altered the sub‐phase duration and displayed positive effects on grain yield traits. Data for 30 selected genotypes (from among the original 210 genotypes) in the field displayed a close association with that from the greenhouse. Most importantly, this study demonstrated specific connections to grain yield in narrower time windows (i.e. the eight sub‐phases), rather than the entire stem elongation phase as a whole.  相似文献   

12.
13.
Metabolism is one of the best‐understood cellular processes whose network topology of enzymatic reactions is determined by an organism's genome. The influence of genes on metabolite levels, however, remains largely unknown, particularly for the many genes encoding non‐enzymatic proteins. Serendipitously, genomewide association studies explore the relationship between genetic variants and metabolite levels, but a comprehensive interaction network has remained elusive even for the simplest single‐celled organisms. Here, we systematically mapped the association between > 3,800 single‐gene deletions in the bacterium Escherichia coli and relative concentrations of > 7,000 intracellular metabolite ions. Beyond expected metabolic changes in the proximity to abolished enzyme activities, the association map reveals a largely unknown landscape of gene–metabolite interactions that are not represented in metabolic models. Therefore, the map provides a unique resource for assessing the genetic basis of metabolic changes and conversely hypothesizing metabolic consequences of genetic alterations. We illustrate this by predicting metabolism‐related functions of 72 so far not annotated genes and by identifying key genes mediating the cellular response to environmental perturbations.  相似文献   

14.
    
Modern plant breeding can benefit from the allelic variation that exists in natural populations of crop wild relatives that evolved under natural selection in varying pedoclimatic conditions. In this study, next‐generation sequencing was used to generate 1.3 million genome‐wide single nucleotide polymorphisms (SNPs) on ex situ collections of Triticum urartu L., the wild donor of the Au subgenome of modern wheat. A set of 75 511 high‐quality SNPs were retained to describe 298 T. urartu accessions collected throughout the Fertile Crescent. Triticum urartu showed a complex pattern of genetic diversity, with two main genetic groups distributed sequentially from west to east. The incorporation of geographical information on sampling points showed that genetic diversity was correlated to the geographical distance (R2 = 0.19) separating samples from Jordan and Lebanon, from Syria and southern Turkey, and from eastern Turkey, Iran and Iraq. The wild emmer genome was used to derive the physical positions of SNPs on the seven chromosomes of the Au subgenome, allowing us to describe a relatively slow decay of linkage disequilibrium in the collection. Outlier loci were described on the basis of the geographic distribution of the T. urartu accessions, identifying a hotspot of directional selection on chromosome 4A. Bioclimatic variation was derived from grid data and related to allelic variation using a genome‐wide association approach, identifying several marker–environment associations (MEAs). Fifty‐seven MEAs were associated with altitude and temperature measures while 358 were associated with rainfall measures. The most significant MEAs and outlier loci were used to identify genomic loci with adaptive potential (some already reported in wheat), including dormancy and frost resistance loci. We advocate the application of genomics and landscape genomics on ex situ collections of crop wild relatives to efficiently identify promising alleles and genetic materials for incorporation into modern crop breeding.  相似文献   

15.
    
L. Zhou  W. Zhao  Y. Fu  X. Fang  S. Ren  J. Ren 《Animal genetics》2019,50(6):753-756
Body conformation at birth and teat number are economically important traits in the pig industry, as these traits are usually explored to evaluate the growth and reproductive potential of piglets. To detect genetic loci and candidate genes for these traits, we performed a GWAS on 269 pigs from a recently developed Chinese breed (Sushan) using 38  128 informative SNPs on the Affymetrix Porcine SNP 55K Array. In total, we detected one genome‐wide significant (P = 1.31e‐6) SNP for teat number on chromosome X and 15 chromosome‐wide significant SNPs for teat number, body weight, body length, chest circumference and cannon circumference at birth on chromosomes 1, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17 and 18. The most significant SNP had an additive effect of 0.74 × total teat number, explaining 20% of phenotypic variance. Five significant SNPs resided in the previously reported quantitative trait loci for these traits and seven significant SNPs had a pleiotropic effect on multiple traits. Intriguingly, 12 of the genes nearest to the significant SNPs are functionally related to body conformation and teat number traits, including SPRED2, MKX, TMSB4X and ESR1. GO analysis revealed that candidate genes proximal to the significant SNPs were enriched in the G‐protein coupled receptor and steroid hormone‐mediated signaling pathway. Our findings shed light on the genetic basis of the measured traits and provide molecular markers especially for the genetic improvement of teat number in Sushan and related pigs.  相似文献   

16.
17.
    
Darwin's finches are an iconic case of adaptive radiation. The size and shape of their beaks are key adaptive traits related to trophic niche that vary among species and evolve rapidly when the food supply changes. Building on recent studies, a paper in this issue of Molecular Ecology (Chaves et al. 2016 ) investigates the genomic basis of beak size variation in sympatric populations of three species of ground finch (Geospiza) by performing a Genome‐wide association study using RAD‐seq data. The authors find that variation in a small number of markers can explain a substantial proportion of variation in beak size. Some of these markers are in genomic regions that have previously been implicated in beak size variation in Darwin's finches, whereas other markers have not, suggesting both conservation and divergence in the genetic basis of morphological evolution. Overall, the study confirms that loci of large effect are involved in beak size variation, which helps to explain the high heritability and rapid response to selection of this trait. The independent identification of regions containing HMGA2 and DLK1 loci in a GWAS makes them prime targets for functional studies. The study also shows that under the right conditions, RAD‐seq can be a viable alternative to genome sequencing for GWAS in wild vertebrate populations.  相似文献   

18.
    
A genome‐wide association study (GWAS) was performed to identify markers and candidate genes for five semen traits in the Holstein bull population in China. The analyzed dataset consisted of records from 692 bulls from eight bull stations; each bull was genotyped using the Illumina BovineSNP50 BeadChip. Association tests between each trait and the 41 188 informative high‐quality SNPs were achieved with gapit software. In total, 19 suggestive significant SNPs, partly located within the reported QTL regions or within or close to the reported candidate genes, associated with five semen traits were detected. By combining our GWAS results with the biological functions of these genes, eight novel promising candidate genes, including ETNK1, PDE3A, PDGFRB, CSF1R, WT1, DSCAML1, SOD1 and RUNX2, were identified that potentially relate to semen traits. Our findings may provide a basis for further research on the genetic mechanism of semen traits and marker‐assisted selection of such traits in Holstein bulls.  相似文献   

19.
    
Pullorum is a bacterial disease that threatens the modern poultry industry. Over the years, research on this topic has focused mainly on its epidemiology, whereas the hosts’ genetic basis of infection is still vague. In order to identify chickens’ genes associated with pullorum, we sequenced 300 New Pudong chicken by double digest genotyping‐by‐sequencing. We obtained 1 527 953 SNPs for a genome‐wide association analysis, which identified 43 genome‐wide significant markers. Most of the significant SNPs were in the interval of 57.7–59.0 Mb on chromosome 5. The gene set enrichment analysis suggests a potential manner for bacterial infection and remaining inside the host. This work provides basic data for the purification, prevention and treatment of pullorum disease.  相似文献   

20.
    
Z. Tan  K. Xing  T. Yang  Y. Pan  Y. Wang  S. Mi  D. Sun  C. Wang 《Animal genetics》2018,49(2):127-131
Using the PorcineSNP80 BeadChip, we performed a genome‐wide association study for seven reproductive traits, including total number born, number born alive, litter birth weight, average birth weight, gestation length, age at first service and age at first farrowing, in a population of 1207 Large White pigs. In total, we detected 12 genome‐wide significant and 41 suggestive significant SNPs associated with six reproductive traits. The proportion of phenotypic variance explained by all significant SNPs for each trait ranged from 4.46% (number born alive) to 11.49% (gestation length). Among them, 29 significant SNPs were located within known QTL regions for swine reproductive traits, such as corpus luteum number, stillborn number and litter size, of which one QTL region associated with litter size contained the ALGA0098819 SNP for total number born. Subsequently, we found that 376 functional genes contained or were near these significant SNPs. Of these, 14 genes—BHLHA15, OCM2, IL1B2, GCK, SMAD2, HABP2, PAQR5, GRB10, PRELID2, DMKN, GPI, GPIHBP1, ADCY2 and ACVR2B—were considered important candidates for swine reproductive traits based on their critical roles in embryonic development, energy metabolism and growth development. Our findings contribute to the understanding of the genetic mechanisms for reproductive traits and could have a positive effect on pig breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号