首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mainland portion of the Adelaide Geosyncline (Mount Lofty and Flinders Ranges) has been postulated as an important arid‐zone climate refugium for Australia. To test the sensitivity of this putative Australian arid biome refugium to contemporary climate change, we compared Generalized Additive Modelling and MaxEnt distribution models for 20 vascular plant species. We aimed to identify shared patterns to inform priority areas for management. Models based on current climate were projected onto a hypothetical 2050 climate with a 1.5°C increase in temperature and 8% decrease in rainfall. Individual comparisons and combined outputs of logistic models for all 20 species showed range contraction to shared refugia in the Flinders Ranges and southern Mount Lofty Ranges. Modelling suggests the Flinders Ranges will experience species turnover while suitable climatic habitat will be retained in the Mount Lofty Ranges for the current suite of species. Fragmentation of the southern Mount Lofty Ranges poses management challenges for conserving species diversity with warming and drying. Although projected models must be interpreted carefully, they suggest the region will remain an important but threatened refugium for mesic species at a continental scale.  相似文献   

2.
In polymorphic species, population divergence in morph composition and frequency has the potential to promote speciation. We assessed the relationship between geographic variation in male throat colour polymorphism and phylogeographic structure in the tawny dragon lizard, Ctenophorus decresii. We identified four genetically distinct lineages, corresponding to two polymorphic lineages in the Northern Flinders Ranges and Southern Flinders Ranges/Olary Ranges regions respectively, and a monomorphic lineage in the Mt Lofty Ranges/Kangaroo Island region. The degree of divergence between these three lineages was consistent with isolation to multiple refugia during Pleistocene glacial cycles, whereas a fourth, deeply divergent (at the interspecific level) and monomorphic lineage was restricted to western New South Wales. The same four morphs occurred in both polymorphic lineages, although populations exhibited considerable variation in the frequency of morphs. By contrast, male throat coloration in the monomorphic lineages differed from each other and from the polymorphic lineages. Our results suggest that colour polymorphism has evolved once in the C. decresii species complex, with subsequent loss of polymorphism in the Mt Lofty Ranges/Kangaroo Island lineage. However, an equally parsimonious scenario, that polymorphism arose independently twice within C. decresii, could not be ruled out. We also detected evidence of a narrow contact zone with limited genotypic admixture between the polymorphic Olary Ranges and monomorphic Mt Lofty Ranges regions, yet no individuals of intermediate colour phenotype. Such genetic divergence and evidence for barriers to gene flow between lineages suggest incipient speciation between populations that differ in morph composition.  相似文献   

3.
Aim The dimensions of species vulnerability to climate change are complex, and this impedes efforts to provide clear advice for conservation planning. In this study, we used a formal framework to assess species vulnerability to climate change quantifying exposure, sensitivity and adaptive capacity and then used this information to target areas for reducing vulnerability at a regional scale. Location The 6500‐km2 Mount Lofty Ranges region in South Australia. Methods We quantified the vulnerability of 171 plant species in a fragmented yet biologically important agro‐ecological landscape, typical of many temperate zones globally. We specified exposure, using three climate change scenarios; sensitivity, as the adverse impact of climate change on species’ spatial distribution; and adaptive capacity, as the ability of species to migrate calculated using dispersal kernels. Priority areas for reducing vulnerability were then identified by incorporating these various components into a single priority index. Results Climate change had a variable impact on species distributions. Those species whose range decreased or shifted geographically were attributed higher sensitivity than those species that increased geographic range or remained unchanged. The ability to adapt to range changes in response to shifting climates varies both spatially and between species. Areas of highest priority for reducing vulnerability were found at higher altitudes and lower latitudes with increasing severity of climate change. Main conclusions Our study demonstrates the use of a single spatially explicit index that identifies areas in the landscape for targeting specific conservation and restoration actions to reduce species vulnerability to climate change. Our index can be transferred to other regions around the world in which climate change poses an increasing threat to native species.  相似文献   

4.
A proactive approach to conservation must be predictive, anticipating how habitats will change and which species are likely to decline or prosper. We use composite species distribution modelling to identify suitable habitats for 18 members of the North American Atlantic Coastal Plain Flora (ACPF) since the Last Glacial Maximum and project these into the future. We then use Scirpus longii (Cyperaceae), a globally imperiled ACPF sedge with many of the characteristics of extinction vulnerability, as a case study. We integrate phylogeographical and population genetic analyses and species distribution modelling to develop a broad view of its current condition and prognosis for conservation. We use genotyping‐by‐sequencing to characterize the genomes of 142 S. longii individuals from 20 populations distributed throughout its range (New Jersey to Nova Scotia). We measure the distribution of genetic diversity in the species and reconstruct its phylogeographical history using the snapp and rase models. Extant populations of S. longii originated from a single refugium south of the Laurentide ice sheet around 25 ka. The genetic diversity of S. longii is exceedingly low, populations exhibit little genetic structure and the species is slightly inbred. Projected climate scenarios indicate that nearly half of extant populations of S. longii will be exposed to unsuitable climate by 2070. Similar changes in suitable habitat will occur for many other northern ACPF species—centres of diversity will shift northward and Nova Scotia may become the last refuges for those species not extinguished.  相似文献   

5.
Climate change affects both habitat suitability and the genetic diversity of wild plants. Therefore, predicting and establishing the most effective and coherent conservation areas is essential for the conservation of genetic diversity in response to climate change. This is because genetic variance is a product not only of habitat suitability in conservation areas but also of efficient protection and management. Phellodendron amurense Rupr. is a tree species (family Rutaceae) that is endangered due to excessive and illegal harvesting for use in Chinese medicine. Here, we test a general computational method for the prediction of priority conservation areas (PCAs) by measuring the genetic diversity of P. amurense across the entirety of northeast China using a single strand repeat analysis of twenty microsatellite markers. Using computational modeling, we evaluated the geographical distribution of the species, both now and in different future climate change scenarios. Different populations were analyzed according to genetic diversity, and PCAs were identified using a spatial conservation prioritization framework. These conservation areas were optimized to account for the geographical distribution of P. amurense both now and in the future, to effectively promote gene flow, and to have a long period of validity. In situ and ex situ conservation, strategies for vulnerable populations were proposed. Three populations with low genetic diversity are predicted to be negatively affected by climate change, making conservation of genetic diversity challenging due to decreasing habitat suitability. Habitat suitability was important for the assessment of genetic variability in existing nature reserves, which were found to be much smaller than the proposed PCAs. Finally, a simple set of conservation measures was established through modeling. This combined molecular and computational ecology approach provides a framework for planning the protection of species endangered by climate change.  相似文献   

6.
Background and Aims A worldwide increase in tree decline and mortality has been linked to climate change and, where these represent foundation species, this can have important implications for ecosystem functions. This study tests a combined approach of phylogeographic analysis and species distribution modelling to provide a climate change context for an observed decline in crown health and an increase in mortality in Eucalyptus wandoo, an endemic tree of south-western Australia.Methods Phylogeographic analyses were undertaken using restriction fragment length polymorphism analysis of chloroplast DNA in 26 populations across the species distribution. Parsimony analysis of haplotype relationships was conducted, a haplotype network was prepared, and haplotype and nucleotide diversity were calculated. Species distribution modelling was undertaken using Maxent models based on extant species occurrences and projected to climate models of the last glacial maximum (LGM).Key Results A structured pattern of diversity was identified, with the presence of two groups that followed a climatic gradient from mesic to semi-arid regions. Most populations were represented by a single haplotype, but many haplotypes were shared among populations, with some having widespread distributions. A putative refugial area with high haplotype diversity was identified at the centre of the species distribution. Species distribution modelling showed high climatic suitability at the LGM and high climatic stability in the central region where higher genetic diversity was found, and low suitability elsewhere, consistent with a pattern of range contraction.Conclusions Combination of phylogeography and paleo-distribution modelling can provide an evolutionary context for climate-driven tree decline, as both can be used to cross-validate evidence for refugia and contraction under harsh climatic conditions. This approach identified a central refugial area in the test species E. wandoo, with more recent expansion into peripheral areas from where it had contracted at the LGM. This signature of contraction from lower rainfall areas is consistent with current observations of decline on the semi-arid margin of the range, and indicates low capacity to tolerate forecast climatic change. Identification of a paleo-historical context for current tree decline enables conservation interventions to focus on maintaining genetic diversity, which provides the evolutionary potential for adaptation to climate change.  相似文献   

7.
中国梧桐属(Firmiana)在世界梧桐属中占比较大,且除梧桐外其余种均为中国特有且分布范围狭窄的植物种,灭绝风险大,研究气候变化对中国梧桐属树种的影响对于维护生物多样性具有重要的意义。结合多时期第六次国际气候耦合模式比较计划(CMIP6)气候变量数据和中国八种梧桐属树种的分布数据,基于R语言kuenm程序包优化的最大熵(Maxent)模型模拟分析中国八种梧桐属树种在多尺度下的潜在适生区,得出梧桐属最适宜的模拟尺度、潜在适生区的面积变化和迁移方向、梧桐属多样性保护关键区域及保护空缺。结果表明:(1)梧桐属最适宜的模拟尺度为亚洲;(2) Maxent模型的接收者操作特征曲线下面积(AUC)值均大于0.9,表明模型对梧桐属潜在适生区预测结果具有较高准确度;(3)气候变化影响下除云南梧桐(Firmiana major)外其它树种的潜在适生区都将在未来有所扩大;(4)中国八种梧桐属树种潜在适生区迁移方向主要为东西向,南北向大跨度迁移较少,纬度变化不大;(5)丹霞梧桐(Firmiana danxiaensis)的稳定潜在适生区最小;(6)中国梧桐属多样性保护关键区域主要分布于广西壮族自治区及云南、广东、海南等省区;(7)中国梧桐属多样性保护空缺区域主要分布于广西壮族自治区中部及海南省北部;(8)梧桐属多样性保护关键区域正在为人造地表所侵蚀。研究分析气候变化对中国八种梧桐属树种的影响及其潜在适生区变化、中国梧桐属多样性保护状态,可为中国梧桐属建立多样性保护廊道提供相关建议,为制定多样性保护规划及相应措施提供参考。  相似文献   

8.
We investigated the impact of past changes in habitat suitability on the current patterns of genetic diversity of two southern beeches (Nothofagus nervosa and Nothofagus obliqua) in their eastern fragmented range in Patagonian Argentina, and model likely future threats to their population genetic structure. Our goal was to develop a spatially-explicit strategy for guiding conservation and management interventions in light of climate change. We combined suitability modelling under current, past (Last Glacial Maximum ~ 21,000 bp), and future (2050s) climatic conditions with genetic characterization data based on chloroplast DNA, isozymes, and microsatellites. We show the complementary usefulness of the distribution of chloroplast haplotypes and locally common allelic richness calculated from microsatellite data for identifying the locations of putative glacial refugia. Our findings suggest that contemporary hotspots of genetic diversity correspond to convergence zones of different expansion routes, most likely as a consequence of admixture processes. Future suitability predictions suggest that climate change might differentially affect both species. All genetically most diverse populations of N. nervosa and several of N. obliqua are located in areas that may be most severely impacted by climate change, calling for forward-looking conservation interventions. We propose a practical spatially- explicit strategy to target conservation interventions distinguishing priority populations for (1) in situ conservation (hotspots of genetic diversity likely to remain suitable under climate change), (2) ex situ conservation in areas where high genetic diversity overlaps with high likelihood of drastic climate change, (3) vulnerable populations (areas expected to be negatively affected by climate change), and (4) potential expansion areas under climate change.  相似文献   

9.
Rhopalosiphum padi (L.) (Hemiptera: Aphididae) was the first species of cereal aphids to colonise annual grasses across the state each year. Numbers were higher in the Lower Murray Valley than in the Mount Lofty Ranges or Adelaide Plains. At all locations, numbers generally increased until grasses reached the boot stage after which they declined. Alatoid production commenced in late July in response to crowding, but thereafter plant age and photoperiod were more important determinants. Metopolophium dirhodum (Walker) (Hem-pitera: Aphididae) and Sitobion nr fragariae (Hemiptera: Aphididae) first appeared in annual grasses in late July.  相似文献   

10.
We describe the habitats and feeding sites used by ten species of honeyeaters in the Mount Lofty Ranges near Adelaide, South Australia.Five of the species have relatively short beaks and feed chiefly on insects gleaned from leaves and bark or captured in the air. They also visit the flowers of Eucalyptus and occasionally of other plants. Species in the same genus occupy different habitats. The five longer-beaked species feed more often onflowers of a wider variety including Eucalyptus, tubular flowers of the heaths and the inflorescences of bottle-brushes. They also feed on insects, most of which they capture in the air. Most of these species overlap broadly in habitat and thus form a guild of species which are very similar in their overall ecology.  相似文献   

11.
Climate change may alter the genetic diversity of plants. However, the relationship between genetic diversity in clonal plant species and climate change is unclear. To address this, we examined a representative clonal plant species, Duchesnea indica. We used microsatellite markers to analyze the genetic diversity of the species and used a correlation analysis to infer the relationship between climatic suitability and genetic diversity by using Maxent modeling. Then, we used a geographical information system approach to evaluate the change in genetic diversity of D. indica under climate change scenarios. There was a significantly negative relationship between climatic suitability and the genetic diversity of the clonal plant species. Using a proxy of genetic diversity, we found that climate change may alter the genetic diversity and even lead to a reduction in regional genetic diversity in D. indica. Annual precipitation, in particular, contributes to these changes in genetic diversity. Hence, climatic factors can be used as indicators of genetic diversity for clonal plant species, and studies should examine the impact of climate change on the maintenance of genetic diversity in plant species.  相似文献   

12.
Understanding the vulnerability of tree species to anthropogenic threats is important for the efficient planning of restoration and conservation efforts. We quantified and compared the effects of future climate change and four current threats (fire, habitat conversion, overgrazing and overexploitation) on the 50 most common tree species of the tropical dry forests of northwestern Peru and southern Ecuador. We used an ensemble modelling approach to predict species distribution ranges, employed freely accessible spatial datasets to map threat exposures, and developed a trait‐based scoring approach to estimate species‐specific sensitivities, using differentiated trait weights in accordance with their expected importance in determining species sensitivities to specific threats. Species‐specific vulnerability maps were constructed from the product of the exposure maps and the sensitivity estimates. We found that all 50 species face considerable threats, with an average of 46% of species’ distribution ranges displaying high or very high vulnerability to at least one of the five threats. Our results suggest that current levels of habitat conversion, overexploitation and overgrazing pose larger threats to most of the studied species than climate change. We present a spatially explicit planning strategy for species‐specific restoration and conservation actions, proposing management interventions to focus on (a) in situ conservation of tree populations and seed collection for tree planting activities in areas with low vulnerability to climate change and current threats; (b) ex situ conservation or translocation of populations in areas with high climate change vulnerability; and (c) active planting or assisted regeneration in areas under high current threat vulnerability but low climate change vulnerability, provided that interventions are in place to lower threat pressure. We provide an online, user‐friendly tool to visualize both the vulnerability maps and the maps indicating priority restoration and conservation actions.  相似文献   

13.
Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond‐breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata; and Southern Leopard frogs, Lithobates sphenocephalus) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond‐breeding amphibian species.  相似文献   

14.
MtDNA sequencing was used to investigate the genetic population structure of Litoria pearsoniana, a wet forest-restricted hylid frog, endemic to southeast Queensland and northeast New South Wales, Australia. L. pearsoniana is regarded as endangered under Queensland legislation. Significant genetic divergence among populations of frogs from different rainforest isolates was identified, but the lack of reciprocal monophyly among adjacent isolates suggests this is the result of a relatively recent disruption to gene flow. A paired catchment study within a single rainforest isolate, the Conondale Range, revealed no substantial genetic structuring, indicating the occurrence of terrestrial dispersal among nearby streams either in the recent past or currently. Two major reciprocally monophyletic clades of mtDNA alleles were identified. These corresponded to two geographical regions separated by the Brisbane River valley; one consisting of the Conondale and D’Aguilar Ranges, and the other of the southern isolates in the Main, Border and Gibraltar Ranges. Sequence divergence between the two regions was more consistent with a late Miocene or Pliocene rather than late Pleistocene separation, and is similar to that found among phylogeographic divisions of rainforest reptiles and amphibians in north Queensland rainforests. The molecular evidence for long-term separation of these two regions is corroborated by the pattern of species turnover in the distributions of species of rainforest-restricted amphibians and reptiles. Bioclimatic modelling suggests that appropriate conditions for L. pearsoniana would have been restricted to isolated refuges in each phylogeographic division under cooler and drier climates, such as predicted for the last glacial maximum. Currently isolated montane areas may have been connected transiently during the past 2000 years. Identification of long-term zoogeographic divisions among southeast Queensland rainforest herpetofauna has important implications for conservation and management. Conservation management of L. pearsoniana should be applied at the scale of major rainforest isolates and the conservation status of the species should be assessed independently north and south of the historical division.  相似文献   

15.
In this study, we test for the key bioclimatic variables that significantly explain the current distribution of plant species richness in a southern African ecosystem as a preamble to predicting plant species richness under a changed climate. We used 54,000 records of georeferenced plant species data to calculate species richness and spatially interpolated climate data to derive nineteen bioclimatic variables. Next, we determined the key bioclimatic variables explaining variation in species richness across Zimbabwe using regression analysis. Our results show that two bioclimatic variables, that is, precipitation of the warmest quarter (R2 = 0.92, P < 0.001) and temperature of the warmest month (R2 = 0.67, P < 0.001) significantly explain variation in plant species richness. In addition, results of bioclimatic modelling using future climate change projections show a reduction in the current bio‐climatically suitable area that supports high plant species richness. However, in high‐altitude areas, plant richness is less sensitive to climate change while low‐altitude areas show high sensitivity. Our results have important implications to biodiversity conservation in areas sensitive to climate change; for example, high‐altitude areas are likely to continue being biodiversity hotspots, as such future conservation efforts should be concentrated in these areas.  相似文献   

16.
Aim We address the unexplored question of whether the lack of information on intra‐specific diversity inherent in species‐level niche modelling might bias evaluation of the conservation requirements of species and phylogeographic lineages under changing climates. We test for directional biases that might arise due to these methodological differences in ways of assessing risks from climate change. Location The African continent. Methods We identified from peer‐reviewed studies that used both nuclear and plastid markers the distribution of deep phylogeographic divisions within nine species of African mammals and their phylogeographic lineages. We fitted ecological niche models to describe currently suitable, occupied climates and to project the shift of suitable climate to two future time slices. We applied gap analysis to reveal potential changes in the protection of phylogeographic diversity owing to climatic shifts. Results We found that, within species, most phylogeographic lineages differ in the climates they experience and have substantial geographic separation. Models that do not distinguish these subspecific units often fail to identify potential risks of climate change to lineages. Modelled potential effects of climate change on the geographic extent of suitable climate vary in both direction and magnitude. Predictions of the persistence of suitable climate in current protected areas for the resident lineages differ on average by factor of 2 between species and lineage models. Main conclusions Our study develops an original synthetic approach by combining niche modelling, projected climate change, phylogeographic information and gap analysis. We clearly identify the potential benefits of using the new approach to evaluate risks to the conservation of intra‐specific genetic diversity that are posed by climate change. Our results suggest that prudent conservation strategies need to incorporate potential differences in climate tolerance among lineages when planning conservation measures for species confronted with environmental change.  相似文献   

17.

Background and Aims

Climate change is expected to alter the geographic range of many plant species dramatically. Predicting this response will be critical to managing the conservation of plant resources and the effects of invasive species. The aim of this study was to predict the response of temperate homosporous ferns to climate change.

Methods

Genetic diversity and changes in distribution range were inferred for the diploid rock fern Asplenium fontanum along a South–North transect, extending from its putative last glacial maximum (LGM) refugia in southern France towards southern Germany and eastern-central France. This study reconciles observations from distribution models and phylogeographic analyses derived from plastid and nuclear diversity.

Key Results

Genetic diversity distribution and niche modelling propose that genetic diversity accumulates in the LGM climate refugium in southern France with the formation of a diversity gradient reflecting a slow, post-LGM range expansion towards the current distribution range. Evidence supports the fern''s preference for outcrossing, contradicting the expectation that homosporous ferns would populate new sites by single-spore colonization. Prediction of climate and distribution range change suggests that a dramatic loss of range and genetic diversity in this fern is possible. The observed migration is best described by the phalanx expansion model.

Conclusions

The results suggest that homosporous ferns reproducing preferentially by outcrossing accumulate genetic diversity primarily in LGM climate refugia and may be threatened if these areas disappear due to global climate change.  相似文献   

18.
Gene flow is an evolutionary process that supports genetic connectivity and contributes to the capacity of species to adapt to environmental change. Yet, for most species, little is known about the specific environmental factors that influence genetic connectivity, or their effects on genetic diversity and differentiation. We used a landscape genetic approach to understand how geography and climate influence genetic connectivity in a foundation riparian tree (Populus angustifolia), and their relationships with specieswide patterns of genetic diversity and differentiation. Using multivariate restricted optimization in a reciprocal causal modelling framework, we quantified the relative contributions of riparian network connectivity, terrestrial upland resistance and climate gradients on genetic connectivity. We found that (i) all riparian corridors, regardless of river order, equally facilitated connectivity, while terrestrial uplands provided 2.5× more resistance to gene flow than riparian corridors. (ii) Cumulative differences in precipitation seasonality and precipitation of the warmest quarter were the primary climatic factors driving genetic differentiation; furthermore, maximum climate resistance was 45× greater than riparian resistance. (iii) Genetic diversity was positively correlated with connectivity (R2 = 0.3744, p = .0019), illustrating the utility of resistance models for identifying landscape conditions that can support a species' ability to adapt to environmental change. From these results, we present a map highlighting key genetic connectivity corridors across P. angustifolia's range that if disrupted could have long‐term ecological and evolutionary consequences. Our findings provide recommendations for conservation and restoration management of threatened riparian ecosystems throughout the western USA and the high biodiversity they support.  相似文献   

19.
Genetic structure and major climate factors may contribute to the distribution of genetic diversity of a highly valued oil tree species Xanthoceras sorbifolium (yellowhorn). Long‐term over utilization along with climate change is affecting the viability of yellowhorn wild populations. To preserve the species known and unknown valuable gene pools, the identification of genetic diversity “hotspots” is a prerequisite for their consideration as in situ conservation high priority. Chloroplast DNA (cpDNA) diversity was high among 38 natural populations (Hd = 0.717, K = 4.616, Tajmas’ D = ?0.22) and characterized by high genetic divergence (FST = 0.765) and relatively low gene flow (Nm = 0.03), indicating populations isolation reflecting the species’ habitat fragmentation and inbreeding depression. Six out of the studied 38 populations are defined as genetic diversity “hotspots.” The number and geographic direction of cpDNA mutation steps supported the species southwest to northeast migration history. Climatic factors such as extreme minimum temperature over 30 years indicated that the identified genetic “hotspots” are expected to experience 5°C temperature increase in next following 50 years. The results identified vulnerable genetic diversity “hotspots” and provided fundamental information for the species’ future conservation and breeding activities under the anticipated climate change. More specifically, the role of breeding as a component of a gene resource management strategy aimed at fulfilling both utilization and conservation goals.  相似文献   

20.
With rates of climate change exceeding the rate at which many species are able to shift their range or adapt, it is important to understand how future changes are likely to affect biodiversity at all levels of organisation. Understanding past responses and extent of niche conservatism in climatic tolerance can help predict future consequences. We use an integrated approach to determine the genetic consequences of past and future climate changes on a bat species, Plecotus austriacus. Glacial refugia predicted by palaeo‐modelling match those identified from analyses of extant genetic diversity and model‐based inference of demographic history. Former refugial populations currently contain disproportionately high genetic diversity, but niche conservatism, shifts in suitable areas and barriers to migration mean that these hotspots of genetic diversity are under threat from future climate change. Evidence of population decline despite recent northward migration highlights the need to conserve leading‐edge populations for spearheading future range shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号