首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the role of shading and cloud combing of moisture by scattered trees of the emergent conifer Araucaria laubenfelsii (Corbass.) in montane shrubland‐maquis at Mont Do, New Caledonia, in facilitating the succession from shrubland to rain forest. Water collection experiments showed that these trees combed significant amounts of water from low clouds on days when no rainfall was recorded and deposited this moisture on the ground beneath the tree canopy. Analysis of photosystem II function in A. laubenfelsii and five other plant species using fluorometry revealed much lower photosystem stress in plants beneath scattered A. laubenfelsii than for individuals exposed to full sunlight in the open maquis. Transition matrix analyses of vegetation change based on “the most likely recruit to succeed” indicated that the transition from maquis to forest was markedly faster when emergent trees of A. laubenfelsii acted as nuclei for forest species invasion of die maquis. On the basis of these lines of evidence, it is argued that increased moisture and shading supplied to the area directly below the crown of isolated A. laubenfelsii trees in the maquis facilitates the establishment of both conifer seedlings and other rain forest tree and shrub species. In the absence of fire, rain forest can reestablish through spread in two ways: first, by expansion from remnant patches, and second, from coalescence of small rain forest patches formed around individual trees of A. laubenfelsii.  相似文献   

2.
Abstract We measured the plasticity of the response of photosynthesis to nutrient supply in seedlings of the dominant four conifer and broadleaved angiosperm tree species from an indigenous forest in South‐westland, New Zealand. We hypothesized that the response of conifers to differing nutrient supply would be less than the response for the angiosperms because of greater adaptation to low fertility conditions. In Prumnopitys ferruginea (D. Don) de Laub. the maximum velocity of electron transport, Jmax, doubled with a 10‐fold increase in concentration of nitrogen supply. In Dacrydium cupressinum Lamb. the maximum velocity of carboxylation, Vcmax, doubled with a 10‐fold increase in phosphorus supply. In contrast, photosynthetic capacity for the angiosperm species Weinmannia racemosa L.f. was affected only by the interaction of nitrogen and phosphorus and photosynthetic capacity of Metrosideros umbellata Cav. was not affected by nutrient supply. The response of the conifers to increasing availability of nutrient suggests greater plasticity in photosynthetic capacity, a characteristic not generally associated with adaptation to soil infertility, thus invalidating our hypothesis. Our data suggest that photosynthetic response to nutrient supply cannot be broadly generalized between the two functional groups.  相似文献   

3.
Nutrient accessions in litterfall are described for a mixed conifer (mostly Agathis australis D.Don (Lindl.), New Zealand kauri) and angiosperm temperate forest in northern New Zealand to determine the relative contributions to nutrient cycling of the conifer and angiosperm components of the forest. Concentrations for many nutrients were significantly lower in conifer litterfall fractions than for equivalent angiosperm fractions. Angiosperm leaves had concentrations of N and P twice those found in conifer leaf fall. Despite a large contribution to litterfall from weight, conifer reproductive parts (mostly cone scales) were very low in nutrients (especially N, P and Ca). Whereas angiosperm litterfall constituted < 45% of total litterfall by weight, nutrient accessions from the angiosperm component accounted for 45–60% of total nutrient accessions and the conifer fraction for only 30–45%, almost the exact reverse of their contributions to litterfall by weight. Of the macronutrients, P (3 kg ha–1 year–1) showed the lowest rate of accession in litterfall while Ca (84 kg ha–1 year–1) showed the highest. Faunal detritus, although < 1% of total litterfall by weight, contributed 10% of total P and 4% of total N reaching the forest floor via the litterfall pathway each year. The C:N and C:P ratios in litterfall and litterstore were all well above the levels at which mineralization is likely to occur. Based on the estimated residence times, long‐term immobilization was more likely for N than for P. The annual pattern of nutrient accessions differed for the two components, with angiosperm accessions highest in spring and summer, and conifer accessions highest in autumn, due largely to a peak in litterfall of reproductive parts at that time of year. It is argued that differences in litter quality, decomposition rates and spatial and temporal patterns of litterfall for angiosperm versus conifer components of the forest, in conjunction with long‐term disturbance regimes, may contribute to conifer–angiosperm coexistence.  相似文献   

4.
Interactions between introduced plants and soils they colonize are central to invasive species success in many systems. Belowground biotic and abiotic changes can influence the success of introduced species as well as their native competitors. All plants alter soil properties after colonization but, in the case of many invasive plant species, it is unclear whether the strength and direction of these soil conditioning effects are due to plant traits, plant origin, or local population characteristics and site conditions in the invaded range. Phragmites australis in North America exists as a mix of populations of different evolutionary origin. Populations of endemic native Phragmites australis americanus are declining, while introduced European populations are important wetland invaders. We assessed soil conditioning effects of native and non‐native P. australis populations on early and late seedling survival of native and introduced wetland plants. We further used a soil biocide treatment to assess the role of soil fungi on seedling survival. Survival of seedlings in soils colonized by P. australis was either unaffected or negatively affected; no species showed improved survival in P. australis‐conditioned soils. Population of P. australis was a significant factor explaining the response of seedlings, but origin (native or non‐native) was not a significant factor. Synthesis: Our results highlight the importance of phylogenetic control when assessing impacts of invasive species to avoid conflating general plant traits with mechanisms of invasive success. Both native (noninvasive) and non‐native (invasive) P. australis populations reduced seedling survival of competing plant species. Because soil legacy effects of native and non‐native P. australis are similar, this study suggests that the close phylogenetic relationship between the two populations, and not the invasive status of introduced P. australis, is more relevant to their soil‐mediated impact on other plant species.  相似文献   

5.

Questions

The exceptional occurrence of tall rain forest patches on foggy coastal mountaintops, surrounded by extensive xerophytic shrublands, suggests an important role of plant–plant interactions in the origin and persistence of these patches in semi‐arid Chile. We asked whether facilitation by shrubs can explain the growth and survival of rain forest tree species, and whether shrub effects depend on the identity of the shrub species itself, the drought tolerance of the tree species and the position of shrubs in regard to wind direction.

Location

Open area–shrubland–forest matrix, Fray Jorge Forest National Park, Chile.

Methods

We recorded survival after 12 years of a ~3600 tree saplings plantation (originally ~30‐cm tall individuals) of Aextoxicon punctatum, Myrceugenia correifolia and Drimys winteri placed outside forests, beneath the shrub Baccharis vernalis, and in open (shrub‐free) areas. We assessed the effects of neighbouring shrubs and soil humidity on survival and growth along a gradient related to the direction of fog movement.

Results

B. vernalis had a clear facilitative effect on tree establishment and survival since, after ~12 years, saplings only survived beneath the shrub canopy. Long‐term survival strongly depended on tree species identity, drought tolerance and position along the soil moisture gradient, with higher survival of A. punctatum (>35%) and M. correifolia (>14%) at sites on wind‐ and fog‐exposed shrubland areas. Sites occupied by the shrub Aristeguietia salvia were unsuitable for trees, presumably due to drier conditions than under B. vernalis.

Conclusions

Interactions between shrubs and fog‐dependent tree species in dry areas revealed a strong, long‐lasting facilitation effect on planted tree's survival and growth. Shrubs acted as benefactors, providing sites suitable for tree growth. Sapling mortality in the shrubland interior was caused by lower soil moisture, the consequence of lower fog loads in the air and thus insufficient facilitation. While B. vernalis was a key ecosystem engineer (nurse) and intercepted fog water that dripped to trees planted underneath, drier sites with A. salvia were unsuitable for trees. Consequently, nurse effects related to water input are strongly site and species specific, with facilitation by shrubs providing a plausible explanation for the initiation of forest patches in this semi‐arid landscape.  相似文献   

6.
Summary Efforts to re‐establish indigenous forests in pastoral New Zealand have increased as the value of native biodiversity has been realized. Direct seeding of woody species is preferable to transplanting, as labour and material costs are less. However, the success rate of direct seeding in pasture has been variable due to intense competition from adventive species. We initiated an experiment in pasture plots adjacent to a forest fragment where seed bed treatments (increasing in degree of disturbance from herbicide application to turf removal and topsoil removal) in combination with mulch treatments (wood chip shavings with and without forest floor organic material) were seeded with a mixture of New Zealand lowland forest species. The objective of the study was to determine if early successional plant communities, and ultimately seedling establishment, differed as a result of seed bed preparation after 1 year. Coprosma robusta (Karamu) and Kunzea ericoides (Kanuka) seedlings established on plots in significant numbers: both species were most abundant on topsoil‐removed plots where bare substrate was greatest and plant cover least. Both seed bed treatments and mulching treatments led to measurable differences in overall composition of early successional plant communities. However, absence of plant cover and low soil fertility (both associated with the topsoil‐removed treatment) were the most important factors in seedling success.  相似文献   

7.
We conducted a field study to determine the relative contributions of aspen (Populus tremuloides), meadow, and conifer communities to local and landscape-level plant species diversity in the Sierra Nevada and southern Cascade Range, northeastern California, USA. We surveyed plant assemblages at 30 sites that included adjacent aspen, conifer, and meadow communities across a 10,000-km2 region. We statistically investigated patterns in local and landscape-scale plant diversity within and among the three vegetation types. Summing across sites, aspen stands supported more plant species overall and more unique plant species than either meadow or conifer communities. Local richness and diversity did not differ between aspen and meadow plots; conifer forest plots were significantly lower in both measures. Heterogeneity in species composition was higher for aspen forest than for meadows or conifer forest, both within sites and between sites. Plant communities in aspen stands shared less than 25% of their species with adjacent vegetation in conifer and meadow plots. Within aspen forest, we found a negative relationship between total canopy cover and plant diversity. Our results strongly support the idea that plant communities of aspen stands are compositionally distinct from adjacent meadows and conifer forest, and that aspen forests are a major contributor to plant species diversity in the study region. Current patterns of aspen stand succession to conifer forest on many sites in the semiarid western US are likely to reduce local and landscape-level plant species diversity, and may also have negative effects on other ecosystem functions and services provided by aspen forest.  相似文献   

8.
Aims To quantify pollen–vegetation relationships from saline to freshwater in an estuarine gradient from surface samples of the modern pollen rain, to allow more accurate interpretations of the stratigraphic palynological record. Location Whangapoua Estuary, Great Barrier Island, northern New Zealand. Methods Six transects were laid out along a vegetation sequence running from estuarine mud to freshwater swamp. Along these transect lines, 108 plots were sampled for vegetation and surface sediments from wet sand, mud, plant litter or moss (sand and mud sites are inundated by most tides, other sites less frequently). All sediment samples were analysed for pollen. The relationships between plant species frequency and pollen representation were examined at a community scale using twinspan and ordination analyses, and for individual species using fidelity and dispersibility indices, regression and box‐plot analyses. Results The quantitative relationships between source taxon vegetation frequency and its pollen representation varied between species due to differential pollen production and dispersal. twinspan of the surface pollen samples suggests five vegetation types: (A) mangrove (Avicennia marina); (C) Leptocarpus similis salt meadow; (D) Baumea sedges; (E) Leptospermum shrubland; and (F) Typha/Cordyline swamp forest. The (B) Juncus kraussii community is not represented palynologically owing to the destruction of its delicate pollen grains during acetolysis of samples. Detrended correspondence analysis places these communities on an estuarine‐to‐freshwater gradient. However, pollen assemblages at the seaward end of the salinity gradient are less clearly representative of the associated vegetation than those at the landward end, probably because the open vegetation at the former allows the influx of wind‐ and water‐dispersed pollen from surrounding vegetation. Main conclusions The vegetation pattern (zonation) at Whangapoua is reflected in the pollen rain. When the long‐distance and over‐represented pollen types are excluded, five out of six of the broad vegetation communities can be identified by their pollen spectra. Species with high fidelity and low‐to‐moderate dispersibility indices can be used to identify the vegetation types in the sedimentary sequences. The more open vegetation types at the ‘marine end’ of the sequence tend to be ‘overwhelmed’ by regional pollen, but the nature of the sediments and the presence of discriminatory species (e.g. A. marina, Plagianthus divaricatus, Cordyline australis), even in small amounts, will allow correct identification of the local vegetation represented in sedimentary palynological sequences. A box‐plot analysis indicates that the pollen and spore types A. marina (mangroves), Sarcocornia quinqueflora (salt meadow), P. divaricatus (sedges), Gleichenia (shrubland) and C. australis (swamp forest) are highly discriminatory in relation to vegetation type. These discriminatory palynomorphs help with the interpretation of stratigraphic pollen studies. However, salt marsh vegetation communities in the sediments must be interpreted with caution as the marine sediments are easily affected by erosion, bioturbation and tidal inundation effects.  相似文献   

9.
Canopy trees are largely responsible for the environmental heterogeneity in the understory of tropical and subtropical species‐rich forests, which in turn may influence sapling community dynamics. We tested the effect of the specific identity of four cloud forest canopy trees on total solar radiation, canopy openness, soil moisture, litter depth, and soil temperature, as well as on the structure and dynamics of the sapling community growing beneath their canopies. We observed significant effects of the specific identity of canopy trees on most understory microenvironmental variables. Soil moisture was higher and canopy openness lower beneath Cornus disciflora. In turn, canopy openness and total solar radiation were higher beneath Oreopanax xalapensis, while the lowest soil moisture occurred beneath Quercus laurina. Moreover, Chiranthodendron pentadactylon was the only species having a positive effect on litter depth under its canopy. In spite of these between‐species environmental differences, only C. pentadactylon had significant, negative effects on sapling density and species richness, which may be associated to low seed germination and seedling establishment due to an increased litter depth in its vicinity. The relevance of the specific identity of canopy trees for natural regeneration processes and species richness maintenance depends on its potential to differentially affect sapling dynamics through species‐specific modifications of microenvironmental conditions.  相似文献   

10.
Abstract. We studied the effects of windthrow on the understory plant species composition of a pine forest (dominated by Pinus strobus) and an oak forest (dominated by Quercus ellipsoidalis). We recorded the presence of vascular plant species in randomly located quadrats in the two forests, and in three microsite types associated with tipup mounds (pit, old soil and new soil) in the pine forest at irregular intervals over the course of 14 years. The understories of the two forests remained distinct throughout the study. The frequency of occurrence of a number of forest floor species considerably increased; few species decreased. The disturbance specialists Rubus idaeus and Polygonum cilinode increased in frequency throughout the study in the pine forest, but are beginning to decline in the less disturbed oak forest. Annuals and biennials preferentially colonized the disturbed soil of microsites on tipups, and declined in frequency after about 7 yr. Both forests have increased in understory species richness, but have not changed substantially in the distribution of growth forms. Despite early differences in species composition, microsite types associated with tipup mounds became more similar through time. Although small in magnitude, there was a directional change in understory composition at both forests, with no apparent sign of a return to pre‐disturbance conditions.  相似文献   

11.
Abstract. Juvenile seedlings, micropropagated plantlets, and adult rooted cuttings of Pinus radiata, together with seedlings of Agathis australis and Dacrydium cupressinum, were grown under either high (670/μmol m?2 s?1) or low (200 μmol m?2 s?1) photosynthetic photon flux density (PPFD) and, at low PPFD, under three red:far-red (R/FR) conditions, approximately simulating canopy shadelight, daylight and one intermediate value. In all types of P. radiata, a shade-intolerant species, stem height and diameter, stem and needle dry weight, and apical dominance were markedly increased by a reduction in R:FR ratio while fascicle density was decreased. In contrast, these increases were considerably less for the shade-tolerant D. cupressinum and moderately tolerant A. australis. With the exception of the P. radiata seedlings, height growth was greatest in all species under high compared to low PPFD for daylight R:FR ratio conditions. Total shoot (or plant) dry weight was increased approximately two-fold in all species and types by the higher PPFD. Shoot extension rates were negatively correlated with calculated phytochrome photoequilibrium with P. radiata, the most shade-intolerant species, having the highest change in rate per unit change in photoequilibrium (i.e. very responsive), and D. cupressinum, the most shade tolerant species evaluated, having the smallest change (i.e. largely unresponsive). Within the spectral quality treatments at low PPFD, it is suggested that higher rates of dry matter accumulation under the low R:FR ratio were the result of reduced mutual shading of adjacent leaves as a consequence of photomorphogenically-controlled internode lengths rather than of enhanced photosynthesis per se. The significance of the results is discussed in relation to planting stock management in nurseries, the management of forest canopies for understorey seedling growth, and to the construction of representative growth simulation models. Consequences for controlled environment lighting are also considered.  相似文献   

12.
We present a global assessment of the relationships between the short‐wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle‐leaf forests (ENF); evergreen broad‐leaf forests (EBF); deciduous needle‐leaf forests (DNF); deciduous broad‐leaf forests (DBF); and mixed‐forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short‐wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad‐leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select ‘pure’ pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models.  相似文献   

13.
Pristine New Zealand forest soil is a strong methane sink   总被引:1,自引:0,他引:1  
Methanotrophic bacteria oxidize methane (CH4) in forest soils that cover ~30% of Earth's land surface. The first measurements for a pristine Southern Hemisphere forest are reported here. Soil CH4 oxidation rate averaged 10.5±0.6 kg CH4 ha?1 yr?1, with the greatest rates in dry warm soil (up to 17 kg CH4 ha?1 yr?1). Methanotrophic activity was concentrated beneath the organic horizon at 50–100 mm depth. Water content was the principal regulator of (r2=0.88) from the most common value of field capacity to less than half of this when the soil was driest. Multiple linear regression analysis showed that soil temperature was not very influential. However, inverse co‐variability confounded the separation of soil water and temperature effects in situ. Fick's law explained the role of water content in regulating gas diffusion and substrate supply to the methanotrophs and the importance of pore size distribution and tortuosity. This analysis also showed that the chambers used in the study did not affect the oxidation rate measurements. The soil was always a net sink for atmospheric CH4 and no net CH4 (or nitrous oxide, N2O) emissions were measured over the 17‐month long study. For New Zealand, national‐scale extrapolation of our data suggested the potential to offset 13% of CH4 emissions from ca. 90 M ruminant animals. Our average was about 6.5 times higher than rates reported for most Northern Hemisphere forest soils. This very high was attributed to the lack of anthropogenic disturbance for at least 3000–5000 years and the low rate of atmospheric nitrogen deposition. Our truly baseline data could represent a valid preagricultural, preindustrial estimate of the soil sink for temperate latitudes.  相似文献   

14.
The presence of a legume in a nitrogen (N)-limited forest ecosystem may not only create ??islands of N fertility?? but also affect the phosphorus (P) availability. The main objective of this study was to compare the effect of a pine (Pinus canariensis) and a leguminous (Adenocarpus viscosus) species on the spatial pattern and variability of different labile organic-N (microbial biomass-N [MB-N] and dissolved organic-N [DON]), as well as inorganic-N (IN) and ?CP fractions (NH4-N, NO3-N, and PO4-P), in a forest soil of the Canary Islands (Spain). Assuming some litter quantity and quality differences between these two species, we expected to find higher soil labile organic-N concentrations under isolated individuals of P. canariensis than under isolated individuals of A. viscosus. We also expected to find higher concentrations and spatial dependence (percentage of total variance explained by spatial autocorrelation) of NO3-N beneath A. viscosus than beneath P. canariensis canopies, and higher spatial scaling of soil variables under the influence of P. canariensis canopies than under the presence of A. viscosus individuals. Moreover, we tested whether the soil variables measured under isolated individuals of both species showed a different spatial variability than the same soil variables measured under overlapping pine canopies inside a pine forest. To test these hypotheses, soil samples under isolated mature individuals of each species were collected in the winter and summer, whereas under a pine forest canopy, the sampling was performed only in the winter. The winter MB-N and DON concentrations were significantly higher beneath the pine individual, whereas the winter NO3-N, NO3-N-to-IN ratio, and PO4-P were significantly higher under the leguminous individual; these differences were not observed in the summer samples. We found higher spatial ranges under the pine than under the legume canopy in the winter sampling, and the spatial dependence of NO3-N was twice as high beneath the legumes as under the pines at both sampling dates. The soil spatial variability was higher (up to 17 times higher) under isolated individuals than inside the pine forest. The results of this study suggest that both the morphological and physiological characteristics of P. canariensis and A. viscosus, as well as the spatial pattern of P. canariensis, may influence the spatial pattern and variability of soil resources.  相似文献   

15.
Little is known about the importance of the forest overstorey relative to other factors in controlling the spatial variability in understorey species composition in near-natural temperate broadleaved forests. We addressed this question for the 19 ha ancient forest Suserup Skov (55°22′ N, 11°34′ E) in Denmark, one of the few old-growth temperate broadleaved forest remnants in north-western Europe, by inventorying understorey species composition and environmental conditions in 163 100 m2 plots. We use unconstrained and constrained ordinations, variation partitioning, and Indicator Species Analysis to provide a quantitative assessment of the importance of the forest overstorey in controlling understorey species composition. Comparison of the gradients extracted by unconstrained and constrained ordinations showed that the main gradients in understorey species composition in our old-growth temperate broadleaved forest remnant are not caused by variability in the forest overstorey, but are related to topography and soil, edge effects, and unknown broad-scale factors. Nevertheless, overstorey-related variables uniquely accounted for 15% of the total explained variation in understorey species composition, with the pure overstorey-related (Rpo), topography and soil (Rpt), edge and anthropogenic disturbance effects (Rpa), and spatial (Rps) variation fractions being of equal magnitude. The forward variable selection showed that among the overstorey-related variables understorey light availability and to a lesser extent vertical forest structure were most important for understorey species composition. No unique influence of overstorey tree species identity could be documented. There were many indicator species for high understorey light levels and canopy gap centres, but none for medium or low light or closed canopy. Hence, no understorey species behaved as obligate shade plants. Our study shows that, the forest overstorey has a weak control of understorey species composition in near-natural broadleaved forest, in contrast to results from natural and managed forests comprising both conifer and broadleaved species. Nevertheless, >20% of the understorey species found were indicators of high light conditions or canopy openings. Hence, variability in canopy structure and understorey light availability is important for maintaining understorey species diversity.  相似文献   

16.
Giant sequoia (Sequoiadendron giganteum) is an iconic conifer that lives in relict populations on the western slopes of the California Sierra Nevada. In these settings, it is unusual among the dominant trees in that it associates with arbuscular mycorrhizal fungi rather than ectomycorrhizal fungi. However, it is unclear whether differences in microbial associations extend more broadly to nonmycorrhizal components of the soil microbial community. To address this question, we used next‐generation amplicon sequencing to characterize bacterial/archaeal and fungal microbiomes in bulk soil (0–5 cm) beneath giant sequoia and co‐occurring sugar pine (Pinus lambertiana) individuals. We did this across two groves with distinct parent material in Yosemite National Park, USA. We found tree‐associated differences were apparent despite a strong grove effect. Bacterial/archaeal richness was greater beneath giant sequoia than sugar pine, with a core community double the size. The tree species also harbored compositionally distinct fungal communities. This pattern depended on grove but was associated with a consistently elevated relative abundance of Hygrocybe species beneath giant sequoia. Compositional differences between host trees correlated with soil pH and soil moisture. We conclude that the effects of giant sequoia extend beyond mycorrhizal mutualists to include the broader community and that some but not all host tree differences are grove‐dependent.  相似文献   

17.
Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO3 and NH4 were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development.  相似文献   

18.
Abstract. Several species of Araucaria and Agathis (Araucariaceae) occur as canopy emergents in rain forests of the western pacific region, often representing major components of total stand biomass. New data from permanent forest plots (and other published work) for three species (Araucaria hunsteinii from New Guinea, A. laubenfelsii from New Caledonia, and Agathis australis from New Zealand) are used to test the validity of the temporal stand replacement model proposed by Ogden (1985) and Ogden & Stewart (1995) to explain the structural and compositional properties of New Zealand rain forests containing the conifer Agathis australis. Here we propose the model as a general one which explains the stand dynamics of rain forests with Araucariaceae across a range of sites and species in the western Pacific. Forest stands representing putative stages in the model were examined for changes through time in species recruitment, growth and survivorship, and stand richness, density and basal area. Support for the model was found on the basis of: 1. Evidence for a phase of massive conifer recruitment following landscape-scale disturbances (e.g. by fire at the Huapai site, New Zealand for Agathis australis); 2. Increasing species richness of angiosperm trees in the pole stage of forest stand development (i.e. as the initial cohort of conifers reach tree size; >10 cm DBH); 3. A high turnover rate for angiosperms (<100 yr), and low turnover for conifers (≥ 100 yr) in the pole stage, but similar turnover rates for both components (50–100 yr) as forests enter the mature to senescent phase for the initial conifer cohort; 4. Very low rates of recruitment for conifers within mature stands, and projected forest compositions which show increasing dominance by angiosperm tree species; 5. A low probability of conifer recruitment in large canopy gaps created by conifer tree falls during the initial cohort senescent phase, which could produce a second generation low density stand in the absence of landscape scale disturbance; 6. Evidence that each of the three species examined required open canopy conditions (canopy openness > 10 %) for successful recruitment. The evidence presented here supports the temporal stand replacement model, but more long-term supporting data are needed, especially for the phase immediately following landscape level disturbance.  相似文献   

19.
The success of restoration plantings in restoring indigenous forest vascular plant and ground invertebrate biodiversity was assessed on previously grass-covered sites in the eastern South Island, New Zealand. The composition and structure of grassland, three different aged restoration plantings (12, 30, and 35 years old), a naturally regenerating forest (100 years old), and a remnant of the original old-growth forest of the area were measured. The restoration plantings are dominated by the native tree Olearia paniculata, which is not indigenous to the study area. Despite this, indigenous forest invertebrate and plant species are present in all three restoration sites and with increasing age the restoration sites become compositionally more similar to the naturally regenerating and mature forest sites. In particular the regenerating vegetation of the restoration sites is very similar floristically to the regenerating vegetation of the naturally regenerating and mature forest sites, despite marked differences in the current canopy vegetation reflecting the presence of the planted O. paniculata. The presence of regeneration in all three restoration sites indicates that the functional processes that initiate regeneration, such as dispersal, are present. The majority of regenerating tree species (71%) are bird dispersed and it is clear that birds play an important role in the recolonization of plant species at these sites despite the absence of edible fruit attractive to frugivorous birds on O. paniculata, a wind-dispersed species. The strong correlations between plant and invertebrate community composition and study-site age (r = 0.80, ?0.24, ?0.68 for plants, beetles, and spiders, respectively) suggest that the restoration site plant and invertebrate communities are undergoing change in the direction of the naturally regenerating and mature forest communities. Without restoration, colonization of grassland by forest plants is very slow in the study area and the restoration plantings studied here have been successful because they have considerably accelerated the return to forest at these sites.  相似文献   

20.
Abstract. A quantitative study of relationships between forest pattern and environment in the central North Island, New Zealand, is based on forest composition data from ca. 2000 existing plots distributed throughout the forests of the region. Estimates of mean annual temperature, rainfall, and solar radiation are derived for each plot from mathematical surfaces fitted to climate station data. Estimates of the depth of the last major rhyolitic eruption, (Taupo Pumice, ca. 130 AD) are derived from isopach maps. A classification procedure is used to identify broad compositional groups. Generalised linear models are used to examine relationships between major species and climatic and other physical factors. Significant relationships are identified between the distributions of both plot groups and species, and climate, vulcanism, topography and drainage. Among these factors, temperature and/or solar radiation are indicated as major determinants of the regional forest pattern, with rainfall, topography, and drainage acting at a secondary level. The role of the Taupo Pumice eruption is more difficult to interpret, and its effects seem to have been greatly influenced by topography. Deep extensive deposits of tephra on flat-to-rolling sites close to the eruption centre have probably favoured the current dominance of these sites by more rapidly dispersing conifers. In contrast, on adjacent steep sites where forest destruction was likely to be less severe, slow-dispersing Nothofagus species are largely dominant. Further work is needed to understand the factors favouring conifer dominance of the central basins and the degree to which Nothofagus species might expand their range in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号