首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Little quantitative evidence exists regarding how effective protected areas are for preserving species. We compared dung beetle assemblages (Coleoptera: Scarabaeidae: Scarabaeinae) inside and outside of the Kruger National Park, which protects indigenous flora and fauna over a large area of savanna in the northeast lowlands of South Africa. Although it is contiguous with other reserves in South Africa, Zimbabwe and Mozambique, parts of its border abut onto farmland. Some effects of differing land usage either side of this border were studied at the South African Wildlife College (24.541° S 31.335° E) and the nearby farming village of Welverdiend using dung beetle assemblage structure (Coleoptera: Scarabaeidae: Scarabaeinae) as indicators. Samples were taken from gabbro-derived and granite-derived soils in open woody vegetation, both within the reserve and on adjoining farmland, using composite pig, elephant and cattle dung baits in the early rainy season (November 2009) and separate pig and elephant dung baits in the late rainy season (March 2010). Despite much higher large mammal density around Welverdiend, significantly greater species richness, abundance, and biomass of dung beetles were recorded in the reserve where mammal species diversity is greater and elephants produce much larger droppings than any mammal in the farmland. Assemblage structure also differed strongly between dung types, weather conditions on sample days, and season, but weakly between sampled soil types. These differences in assemblage structure were recorded over short distances as the sites in the reserve were only 3?C4?km from those in farmland at Welverdiend.  相似文献   

2.
1. Aridity gradients are paralleled by both reductions in resources and decreased species richness of animals. Across the aridity gradient of the Botswana Kalahari, a reduction in mammal species richness leads to reduced density and diversity of dung types, accompanied by reduced dung beetle species richness. We investigated whether this gradient also drives changes in dung beetle food type association and specialisation owing to a loss of some dung types to the arid southwest. 2. Dung beetles were sampled from three study sites in each of the six study areas using 2 × 10 grids of pitfall traps baited with dung (pig, elephant, cattle, and sheep) or carrion (chicken livers). 3. Canonical correspondence analysis (CCA) showed that distributions of dung beetle species between bait types deviated significantly from random associations. 4. Central Kalahari assemblages were more specialist than those at the mesic and arid extremes of the gradient. 5. Patterns of selection and specialisation to bait types differed between mesic northeast and arid southwest study areas. There were specialist faunas on carrion and more generalist faunas on ruminant herbivore dung (cattle and sheep) in each region. However, specialist species associated with elephant dung in the northeast were replaced by a more generalist fauna in the southwest with an opposite trend on pig dung. 6. Reduced species richness and high species turnover from the mesic northeast to the arid southwest is paralleled by a shift in patterns of food association that may reflect changes in the diversity of food types, particularly the absence of elephant dung from the southwest.  相似文献   

3.
The Mediterranean region as a whole has the highest dung beetle species richness within Europe. Natural coastal habitats in this region are among those which have suffered severe human disturbance. We studied dung beetle diversity and distinctiveness within one of the most important coastal protected areas in the west Euro‐Mediterranean region (the regional Park of Camargue, southern France) and made comparisons of dung beetle assemblages with other nearby Mediterranean localities, as well as with other coastal protected area (Doñana National Park, Spain). Our finding showed that: (1) The species richness of coastal habitats in the Camargue is low and only grasslands showed a similar level of species richness and abundance to inland habitats of other Mediterranean localities. The unique habitats of the coastal area (beaches, dunes and marshes) are largely colonized by species widely distributed in the hinterland. (2) In spite of their low general distinctiveness, dune and marsh edges are characterized by the occurrence of two rare, vulnerable, specialized and large roller dung beetle species of the genus Scarabaeus. As with other Mediterranean localities, current findings suggest a recent decline of Scarabaeus populations and the general loss of coastal dung beetle communities in Camargue. (3) The comparison of dung beetle assemblages between the Camargue and Doñana shows that, in spite of the low local dung beetle species richness in the Camargue, the regional dung beetle diversity is similar between both protected areas. Unique historical and geographical factors can explain the convergence in regional diversity as well as the striking divergence in the composition of dung beetle assemblages between both territories.  相似文献   

4.
There are concerns over the increasing encroachment of humans, domestic livestock, and farming onto Maputo Special Reserve because of the potential for habitat modification. Therefore, differences between an undisturbed area of the reserve and a neighbouring farming area are assessed using dung beetle as indicators. In each of the two areas, pig-dung-baited pitfall traps were used to sample dung beetle assemblages in two contrasting habitats, grassland and forest. Distributional analysis of the 57 species and 36 942 individuals that were captured, showed that species richness, species turnover, relative abundance patterns, and biogeographical composition differed strongly between both habitats and areas under different land usage. However, in analyses that apportion variation, the greatest amounts were related to habitat rather than land usage. Even so, in both habitats, the total and mean number of species per trap was higher in the farmed area than in the reserve although this was a significant trend only in grassland. Furthermore, in grassland, widespread species were better represented in the farmed area than in the reserve whereas in forest, widespread species were poorly represented compared to grassland. Also in forest, Maputaland endemics were better represented in the reserve than in the farmed area. Further work is necessary to separate the different geographical, ecological, and land usage factors responsible for the patterns detected in this preliminary study. Even so, there are clearly differences between the Maputo Special Reserve and the farmed area.  相似文献   

5.
Traditional agro-pastoral practices are in decline over much of the Alps, resulting in the complete elimination of livestock grazing in some areas. Natural reforestation following pastoral abandonment may represent a significant threat to alpine biodiversity, especially that associated with open habitats. This study presents the first assessment of the potential effects of natural reforestation on dung beetles by exploring the relationships between the beetle community (abundance, diversity, species turnover and assemblage structure) and the vegetation stages of ecological succession following pastoral abandonment. A hierarchical sampling design was used in the montane belt of the Sessera Valley (north-western Italian Alps). Dung beetles were sampled across 16 sampling sites set in four habitat types corresponding to four different successional stages (pasture, shrub, pioneer forest and beech forest) at two altitudinal levels. The two habitats at the extremes of the ecological succession, i.e. pasture and beech forest, had the greatest effect on the structure of local dung beetle assemblages. Overall, dung beetle abundance was greater in beech forest, whereas species richness, Shannon diversity and taxonomic diversity were significantly higher in pasture, hence suggesting this latter habitat can be considered as a key conservation habitat. Forests and pastures shared a lower number of species than the other pairs of habitats (i.e. species turnover between these two habitats was the highest). The two intermediate seral stages, i.e. shrub and pioneer forest, showed low dung beetle abundance and diversity values. Local dung beetle assemblages were also dependent on season and altitude; early-arriving species were typical of pastures of high elevation, whereas late-arriving species were typical of beech forests. It is likely that grazing in the Alps will continue to decrease in the future leading to replacement of open habitats by forest. This study suggests therefore that, at least in the montane belt, reforestation may have potentially profound and negative effects on dung beetle diversity. Maintaining traditional pastoral activities appears to be the most promising approach to preserve open habitats and adjacent beech forests, resulting in the conservation of species of both habitats.  相似文献   

6.
Philip Nyeko 《Biotropica》2009,41(4):476-484
Very little is known about the diversity of arthropods in the fast-disappearing fragments of natural forests in sub-Saharan Africa. This study investigated: (1) the influence of forest fragment characteristics on dung beetle species richness, composition, abundance, and diversity; and (2) the relationship between dung beetle assemblages and rainfall pattern. Beetles were sampled through 12 mo using dung baited pitfall traps. A total of 18,073 dung beetles belonging to three subfamilies and 45 species were captured. The subfamily Scarabaeinae was the most abundant (99%) and species rich (89%). Fast-burying tunnellers (paracoprids) were the most dominant functional group. Catharsius sesostris, Copris nepos , and Heliocopris punctiventris were the three most abundant species, and had the highest contributions to dissimilarities between forests. With few exceptions, dung beetle abundance, species richness, and diversity were generally higher in larger forest fragments (100–150 ha) than in smaller ones (10–50 ha) and the nature reserve (1042 ha). Forest fragment size had a highly significant positive relationship with beetle abundance, but only when the nature reserve is excluded in the analysis. Dung beetle abundance and species richness showed direct weak relationships with litter depth (positive) and groundcover (negative) but not tree density, tree species richness, and fragment isolation distance. Dung beetle abundance and species richness were strongly correlated with monthly changes in rainfall. Results of this study indicate that forest fragments on agricultural lands in the Budongo landscape, especially medium-sized (100–150 ha) ones, represent important conservation areas for dung beetles.  相似文献   

7.
The interaction between land use and climate change is expected to strongly affect species distributions along high elevation landscapes. We aimed to test the effect of climatic variables on community metrics among five types of land use in a high elevation landscape. We described dung beetle spatial and temporal taxonomic and functional diversity patterns, and partitioned β‐diversity into turnover and nestedness components. The interaction between land use and daily period of activity mostly drives abundance, functional richness and functional diversity, but not dung beetle species richness. Unlike Neotropical lowlands, species richness and abundance in open environments are similar to those existing in forests. Temperature is an important predictor of abundance and functional divergence. There is a higher spatial component of the taxonomic β‐diversity, which is highly driven by species turnover. The temporal component of the taxonomic β‐diversity was strongly driven by nestedness, where night assemblages are sub‐sets, although not entirely, of diurnal assemblages. For functional diversity, the temporal β‐diversity was much higher than the spatial β‐diversity, but both were similarly represented by functional group turnover and nestedness. The composition of nocturnal and diurnal assemblages is clearly different, even more than the differences observed between habitats. However, taxonomic turnover is the dominant force between sampling sites while nestedness dominates the daily pattern. This means that forest habitats are unlikely to act as shelters for grassland species under a scenario of rising temperature.  相似文献   

8.
The loss of natural habitats is one of the main drivers of biodiversity decline. Anthropogenic land uses preserving biotic and abiotic conditions of the native ecosystem are more suitable to preserve the native biodiversity. In this study, we explored changes in species richness and composition in different land uses of the southern Atlantic forest, considering three independent factors: (1) canopy (presence–absence), (2) type of vegetation (native–exotic) and (3) livestock (presence–absence). We expected a gradient of response in the richness and composition of the native forest dung beetle community, from land uses preserving canopy and native vegetation to open land uses with exotic vegetation. Dung beetles were sampled in protected native forests and four land uses, using two potential food resources: human dung and carrion. The species richness and composition of each habitat, as well as differences in composition and the influence of factors over diversity, were then analyzed. As expected, our results showed that land uses preserving canopy and native vegetation maintain the dung beetle diversity of the native forest. Moreover, while the three factors analyzed influenced dung beetle diversity, canopy cover was the main driver of dung beetle diversity loss. The main conclusion of this study is that the conservation of canopy (either native or exotic) is determinant to preserve highly diverse dung beetle communities and subsequently, the ecological functions performed by this taxon. However, the ecophysiological mechanism behind the response of dung beetles to habitat disturbance is poorly understood.  相似文献   

9.
Dung beetles (Coleoptera: Scarabaeidae) are undoubtedly the most typical and ecologically relevant insects of grazed alpine habitats because they provide valuable ecological services such as biological pest control and soil fertilization. Despite the great ecological contribution of these insects to pasture ecosystem functioning, little is known about their direct or indirect relationships with pastoral activities. The main aim of the study was to assess whether dung beetle diversity was influenced by different intensities of cattle grazing. Dung beetle communities of two adjacent alpine valleys within the Maritime Alps Natural Park (north-western Italian Alps), representing overgrazed and ungrazed pastures, were studied by pitfall trapping. A hierarchical design (three levels: valleys, transects, and replicates) was established for additive partitioning of γ-diversity and Indicator Species Analysis. Evenness and Shannon diversity were significantly higher at the ungrazed than at the overgrazed site because abundances were much more evenly distributed at the former than at the latter site (where one species was dominant over all the others). Dung beetle abundance and species richness of the overgrazed graminaceous pasture vegetation types were in most cases significantly lower than those of the ungrazed nongraminaceous vegetation type. In the additive partitioning of γ -diversity analysis relative to the whole study area, the randomization procedure indicated that the contribution of β to γ-diversity was significantly different from that expected by chance, suggesting that one or more environmental factors has intervened to change the partition of total diversity in the system considered. The analysis of the preferences and fidelity of species (Indicator Species Analysis) showed that only one species chose overgrazed pastures; all the others positively selected the ungrazed site, or the only ungrazed pasture vegetation type (Rumicetum alpini Beger) occurring at the overgrazed site. Results conformed to evidences that overgrazing represents a serious threat to the conservation of alpine dung beetles. To conserve local dung beetle assemblages, especially in protected areas, cattle overgrazing should be avoided. This does not mean, however, that pastoral activities are incompatible with biodiversity conservation. The contemporaneous presence of wild ungulates and low intensity extensive pastoral activities may be useful to preserve both local dung beetle assemblages and alpine pasture ecosystems.  相似文献   

10.
The disturbance of natural environments affects, among others, the diversity of dung beetle assemblages, which could have serious consequences for the ecological processes regulated by these insects. The objective of this study was to evaluate and compare species diversity and functional groups of dung beetle assemblages both in the native forest and in three livestock systems that differed in their structure and composition of vegetation: a livestock system with native trees, a livestock system with exotic trees (Pinus taeda), and traditional open pastures, in the semideciduous Atlantic forest of Argentina, in an area previously covered by continuous forest and currently with a heterogeneous landscape of native forest and different land uses. Pitfall traps baited with cow dung were used in the natural forests and the livestock systems studied. A total of 2461 beetles belonging to 38 species were captured. Treed livestock systems showed the highest species richness (0D) and diversity (1D and 2D). Twelve functional groups were identified. The native forest showed the highest functional group richness, while open pastures had the lowest. In general, livestock systems showed a low proportional abundance of telecoprid, diurnal and large beetles. Microclimate (average temperature and humidity) and soil conditions (soil composition: sandy or clayey) were closely associated with the species and functional group composition. Results confirm that cattle ranching with tree retention preserves dung beetle diversity, and suggest that cattle systems without canopy cover have higher impact (negative effects) than silvopastoral systems on both species and functional groups.  相似文献   

11.
  1. An important service in many ecosystems is the turnover and degradation of dung deposited by cattle. Dung beetles are the primary group of insects responsible for dung turnover, and factors affecting their abundance and distribution thus impact dung degradation. Lands lost to grazing due to dung buildup and pasture contamination total millions of acres per year in US pastures.
  2. We evaluated the structural differences in dung beetle assemblages in natural grasslands versus a managed agroecosystem in subtropical southeastern Florida (USA). We measured the direct effect of dung longevity when dung beetle fauna normally inhabiting dung pats were excluded.
  3. Our results indicate dung beetle abundance, functional diversity, and species richness have a substantial impact on the rate of dung turnover in subtropical pastoral lands with ~70% of dung removed from the soil surface after three months. Functional diversity and evenness did not have a significant positive effect on dung removal in managed, versus natural grasslands demonstrating a strong relationship between dung beetle assemblage composition and delivery of a key ecological process, dung degradation.
  4. We suggest the importance of trees, which provide a thermal refuge for beetles, should be dispersed within matrixes of open pasture areas and within proximity to adjacent closed‐canopy hammocks to facilitate the exchange of dung beetles between habitats and therefore maintain the provisioning of dung degradation services by dung beetle assemblages.
  相似文献   

12.
Dung beetles highly depend on the ephemeral microhabitat dung which is food resource and larval habitat at the same time. Environmental conditions surrounding a dung pad, such as vegetation structure, have an impact on dung beetle assemblages. We investigated the influence of dung conditions and surrounding habitat characteristics on Mediterranean dung beetle assemblages in a permanently grazed landscape in northern Sardinia. We sampled the dung beetle assemblages of donkey and horse dung in three different vegetation types and assessed species richness and abundance of dung beetles. Species richness was determined by dung and surrounding habitat conditions, whereas abundance was solely affected by dung conditions. However, species richness and abundance decreased with increasing dung density. The effect of dung density on species richness varied depending on vegetation type, with dry grassland exhibiting the highest number of dung beetles species at high dung density. Species composition in dung pads was influenced by abiotic factors with dwellers being negatively affected by increasing dung-pad temperature. Our results underline the importance of diverse vegetation, particularly with respect to the complexity of vegetation which interrelates with the microclimate. Furthermore, our findings illustrate the negative effect of high dung densities on dung beetle assemblages, suggesting that the degree of the intensity of use by grazing animals is important when considering measures for the conservation of dung beetles.  相似文献   

13.
Environmental fluctuations, such as changes in climate, agricultural management and anthropogenic land-use patterns can affect the diversity of organisms inhabiting an area. Losses of biodiversity alter ecosystems processes, eroding their capacity to deliver ecosystem services. Dung beetles are critical ecosystem service providers, making them an ideal ecological indicator to explore the effects of land-use change on biodiversity. Dung beetles were sampled across three land-use types, in the summers of 2015 and 2016 in the Eastern Cape province, South Africa. Game ranching is regarded as a relatively low-intensity land use type. It was compared with cattle ranching (medium intensity) and dairy farming (high intensity) to examine their effect on dung beetle assemblage metrics (abundance, species richness and true Shannon diversity index), guild diversity (as nesting guilds) and spatial turnover. The intermediate grazing intensity of cattle ranching supported a higher abundance and diversity of both whole dung beetle assemblage and the nesting guilds, followed by the game ranches and then dairy farms. Differences between the sampling years were dependent on the beetle nesting guild, and largely correlated with rainfall and temperature. Cattle and game ranches shared a higher number of species than either shared with dairy farms. Whittaker's Beta-diversity index showed the highest species turnover between game ranches and dairy farms. A mix of game and cattle ranching, minimising dairy farming or restricting it to already ecological degraded sites, appears the best alternative for maintenance of dung beetle diversity and their ecosystem services. The year-to-year trends of the data were in general consistent, confirming that dung beetles are reliable ecological indicators; but also suggest that climate change that affects rainfall will result in the reduction of the abundance and diversity of this key ecological group.  相似文献   

14.
Despite high diversity levels of beetles inhabiting dung and carcasses, very few studies have attempted a comparative assessment of copro-necrophile beetle communities in relation to spatio-temporal variations, particularly in the tropics where the vast majority of beetles occur. We compared beetle assemblages attracted to pads of cattle dung and rat carcasses in four contrasting vegetation types associated with oak forest. In a total of 52 transects including 3,952 dung pad days and 2,600 carcass-trap days we recorded 14,989 beetles representing 406 species and 33 families. Necrophiles (323 species and 33 families) were considerably more diverse than coprophiles (172 species and 16 families). Staphylinidae were taxonomically and numerically dominant, comprising 45% of species and 66% of individuals, respectively. Species estimators (Chao 2) suggested that the observed beetle richness represented 68% of coprophile and 56% of necrophile species richness, with rare species constituting the majority of the species: singletons and doubletons?=?89 species (52%) of coprophiles and 166 species (51%) of necrophiles. Beetle assemblages varied in diversity and composition as regards to vegetation type and season: samples from less disturbed vegetation types (continuous oak forest and ravines) had higher beetle diversity, and a strong seasonality effect was recorded for necrophiles, but not for coprophiles. In addition, an indicator value analysis (IndVal), showed that relatively preserved vegetation types recorded more indicator species as compared to disturbed sites. Our studies clearly demonstrates that the least fragmented oak forest and ravine are the most valuable areas for necrophile and coprophile beetles in Neotropical Mexico, especially for specialist beetles.  相似文献   

15.
The conversion of Brazilian savanna into exotic pastures leads to the loss of dung beetles and a decrease in their contribution to ecological functions. We hypothesized that the dung beetle communities from exotic pastures would show greater significant differences between climatic zones, when contrasted to communities from Brazilian savanna in the same region, since dung beetle assemblages in pastures are more simplified. We assessed which variables (purpose of production, type of management, percentage the habitat per buffer, soil penetration resistance, pasture area and herd size) affect more the dung beetle community in exotic pastures. We carried out this study in 48 areas of native Brazilian savannas and exotic pastures distributed across four bioclimatic zones: BZ1, hot with three dry months; BZ2, hot with 4–5 dry months; BZ3, sub-hot with 4–5 dry months and BZ4, meso-thermal with 4–5 dry months of Minas Gerais State, Brazil. In each BZ, six areas of Brazilian savannas and six areas of exotic pasture were selected. In the Brazilian savanna areas, the species richness, abundance and biomass of dung beetles did not differ between the bioclimatic zones, unlike the exotic pastures. The composition of the dung beetle community was different between land use systems and between bioclimatic zones; the interaction between the two factors was also significant. Our results provide evidence that dung beetle communities active in exotic pastures are more susceptible to climatic environmental variations than communities from more complex and stable habitats, such as savannas. Finally, the best model suggested that all the six variables combined explained about 91% of the total variability in species composition observed between sampling sites.  相似文献   

16.
Landscape ecological networks (ENs) consist of landscape-scale conservation corridors that connect areas of high natural value within a production mosaic with protected areas (PAs). In South Africa, ENs have been implemented on a large spatial scale to offset the negative impacts of plantation forestry on indigenous grasslands. We focus on corridor width as a factor for conserving dung beetle and ant diversity within an EN. We also investigate the importance of natural environmental heterogeneity (elevation, vegetation type) and habitat quality (soil hardness, invasive alien plant density). We sampled dung beetles and ants in 30 corridors of different sizes, and at ten sites in a nearby PA. In addition, we also analysed dung beetles according to their feeding guild. Tunnelling dung beetle species richness increased with corridor width. Rolling dung beetle species richness was higher in the PA than in the corridors of the EN. The dung beetle assemblage within the EN differed from that within the PA. Corridors of various widths differed in ant composition but not in species richness. Furthermore, the PA and the EN differed in environmental variables, which contributed to differences in dung beetle species richness and assemblage composition. Within the EN, environmental heterogeneity across the landscape was more important than corridor width for driving species diversity of both dung beetles and ants. When planning future ENs, wide corridors (>280 m) that encompass as much natural heterogeneity across the landscape as possible will best conserve the range of local insect species.  相似文献   

17.
Aim We describe the changes in species richness, rarity and composition with altitude, and explore whether the differences in Scarabaeinae dung beetle composition along five altitudinal transects of the same mountain range are related to altitude or if there are interregional differences in these altitudinal gradients. Location Field work was carried out on the eastern slope of the eastern Cordillera, Colombian Andes, between Tamá Peak to the north, in the Tamá National Park (07°23′ N, 72°23′ W) and the San Miguel River (00°28′ N, 77°17′ W) to the south. Methods Sampling was carried out between February 1997 and November 1999 in five regions spanning elevation gradients. In each gradient, six sites were chosen at 250 m intervals between 1000 and 2250 m a.s.l. Results We found a curvilinear relationship between altitude and mean species richness, with a peak in richness at middle elevations. However, the diversity of dung beetle assemblages does not seem to be related to the interregional differences in environmental conditions. The number of geographically restricted species is negatively and significantly related to altitude, with geographically restricted species more frequent at low altitude sites. Ordination delimited the two main groups according to altitude: one with all the highest sites (1750–2250 m a.s.l.) and a second group with the remaining sites (< 1750 m a.s.l.). Analysis of species co‐occurrence shows that these dung beetle assemblages seem to be spatially structured when all sites have the same probability of being chosen. In contrast, the spatial structure of species assemblages seems to be random when the probability of choosing any site is proportional to its altitude. Main conclusions The altitude of sites is the main factor that influences the diversity of these dung beetle assemblages. The peak in species richness at middle elevations, the higher number of geographically restricted species at lower altitudinal levels, and the compositional differences along these mountain gradients seem to result from the mixing at these altitudes of dung beetle assemblages that have different environmental adaptations and, probably, different origins. The relevance of altitude in these assemblages is related to the limited role of these Neotropical high altitude environments as centres of refuge and vicariance for a monophyletic group of warm‐adapted species, for which the vertical colonization of these high mountain environments by lineages distributed at lower altitudes would have been very difficult.  相似文献   

18.
Unraveling how climate change impacts the diversity and distribution patterns of organisms is a major concern in ecology, especially with climate-sensitive species, such as dung beetles. Often found in warmer weather conditions, beetles are used as bio-indicators of environmental conditions. By using an altitudinal gradient as a proxy for climate change (i.e., space-for-time substitution), we assessed how changes in climatic variables, such as temperature and precipitation, impact patterns of dung beetle diversity and distribution in the Peruvian Andes. We recorded dung beetle diversity using three different types of baits, feces, carrion, and fruits, distributed in 18 pitfall traps in five different altitudinal sites (from 900 to 2500 m, 400 m apart from each other) in the rainy and dry season. We found that (i) dung beetle richness and abundance were influenced by the climate gradient, (ii) seasonality influenced beetle richness, which was high in the wet season, but did not influence abundance, (iii) dung beetle richness and abundance fit to a hump-shaped distribution pattern along the altitudinal gradient, and (iv) species richness is the beta-diversity component that best describes the composition of dung beetle species along the altitudinal gradient. Our data show that the distribution and diversity of dung beetles are different at larger scales, with different patterns resulting from the response of species to both abiotic and biotic factors.  相似文献   

19.
Identifying and making use of ecological indicators becomes an essential task in the conservation of tropical systems, mainly in fragmented landscapes where land use intensification and habitat loss are confounding factors in the detection of species’ responses to human-caused disturbance. We aimed to analyze the importance of anthropogenic land use and fragmentation-related effects on dung beetle (Coleoptera: Scarabaeinae) persistence according to the interior–exterior non-linear gradient (forest + matrix) in a fragmented Atlantic Forest landscape used to sugar cane production and cattle ranching/farming. We offer scores for a comprehensive set of community-level attributes, from beetle abundance to taxonomic and ecological composition (i.e. species body size), including a list of indicator species of different forest habitats and adjacent matrix. Dung beetles were surveyed by traps across forest interiors (i.e. core forest areas) and edges of a primary forest, small fragments, sugar cane fields and pastures in a total of 60 sites. Indicator analyses were conducted across the landscape, using two well-established methods (IndVal and SIMPER). Our results suggest that (1) cross-habitat taxonomic distinctness is associated with the presence of indicator species, (2) some species benefit or are dependent of open habitats created by human-disturbances, such as forest edges (e.g. Canthon nigripennis) and matrices (e.g. Canthon aff. piluliformis, Dichotomius nisus and Trichilum externepunctatum), (3) although landscape habitats exhibit reduced beta diversity, dung beetle assemblages are spatially organized in response to the presence of both forest habitats and matrix and fragment area, (4) forest interior supports beetle assemblages biased toward large-bodied species, (5) accordingly forest interior, forest edges and matrix support taxonomically distinct assemblages, both contributing to the bulk of species richness at landscape level, (6) the response of dung beetles to the interior–exterior non-linear gradient (i.e. forest edge + matrix) reveals a similar pattern regardless of the nature of the matrix, and (7) there is no within-habitat variation in beetle abundance and species richness associated with distance from forest edge. Given that there is a high number of forest-dependent or forest-interior specialist species (e.g. Aphengium aff. sordidum, Ateuchus aff. alipioi, Dichotomius mormon, Ontherus aff. erosus and Onthophagus aff. clypeatus) dung beetle persistence in human-modified landscape is highly dependent on the presence of core areas, although edge-affected and matrix habitats may be complementary. This information is essential to permit a better prospect for dung beetle persistence in human-modified landscapes as they continue to move toward edge-dominated landscapes with intensively managed matrices.  相似文献   

20.
Scarabaeinae dung beetles are indicator insects used in the evaluation of the ecological effects caused by changes in habitat structure and ecosystem integrity resulting from environmental degradation. We compared dung beetle diversity in conserved restinga forests (coastal tropical moist broadleaf forest) and in reforested areas of various ages during the rainy and dry seasons, on the coast of Paraíba State, Brazil. A total of 3,634 individuals comprising 14 species were collected. In the reforested areas there was a gradual increase in species abundance relative to the area’s age, but in the conserved restinga the abundance of individuals was 10–20 times higher than that recorded in areas of recent reforestation. The highest species richness was found in the conserved restinga and in the oldest reforested area (16 years old) during the rainy season. During the dry season, when environmental conditions do not seem to favor adult survival, most of the species were found in the conserved restinga forest. The dung beetle community structure was related to the increases in habitat heterogeneity in the successional processes of the reforested areas. Our results suggest that reforested areas act as a source of and refuge for dung beetle species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号