首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kunze A  Valero A  Zosso D  Renaud P 《PloS one》2011,6(10):e26187
Native functional brain circuits show different numbers of synapses (synaptic densities) in the cerebral cortex. Until now, different synaptic densities could not be studied in vitro using current cell culture methods for primary neurons. Herein, we present a novel microfluidic based cell culture method that combines 3D micropatterning of hydrogel layers with linear chemical gradient formation. Micropatterned hydrogels were used to encapsulate dissociated cortical neurons in laminar cell layers and neurotrophic factors NGF and B27 were added to influence the formation of synapses. Neurotrophic gradients allowed for the positioning of distinguishable synaptic densities throughout a 3D micropatterned neural culture. NGF and B27 gradients were maintained in the microfluidic device for over two weeks without perfusion pumps by utilizing a refilling procedure. Spatial distribution of synapses was examined with a pre-synaptic marker to determine synaptic densities. From our experiments, we observed that (1) cortical neurons responded only to synergistic NGF/B27 gradients, (2) synaptic density increased proportionally to synergistic NGF/B27 gradients; (3) homogeneous distribution of B27 disturbed cortical neurons in sensing NGF gradients and (4) the cell layer position significantly impacted spatial distribution of synapses.  相似文献   

2.
Electron microscopic observations of serially sectioned perioral neurons revealed a complex synaptic organization in which reciprocal synapses were observed for the first time in Hydra. Sensory cells had reciprocal synapses with each other and with ganglion cells, which in turn had reciprocal synapses with each other. A two-way chemical synapse with vesicles on both sides of the paramembranous densities was observed between ganglion cells; none was found between sensory cells. Ganglion cell axons participated in serial axo-axo-epitheliomuscular synapses. Two-cell pathways formed by direct sensory cell-nematocyte or neuromuscular synapses and three-cell pathways forming indirect sensory cell-ganglion cell-nematocyte or neuromuscular synaptic interconnections were found. It is possible that either simple direct changes in or direct effects on threshold stimuli could trigger both nematocyst discharge and/or muscular contraction and effect more complex intermediate pathways modulating feeding behavior. Each large epitheliomuscular cell enveloped from one to four sensory cells in the perioral region. The concentration of sensory cells around the mouth and their complex synaptic connections with each other and with ganglion and effector cells support our hypothesis for neural control of feeding behavior in Hydra.  相似文献   

3.
视皮层LTP维持阶段的突触形态计量学研究   总被引:6,自引:0,他引:6  
Chen YC  Han TZ  Shen JX  Qiao JT 《生理学报》1999,51(1):73-79
本实验使用18~20d的幼年大鼠视皮层脑片标本,在LTP出现后3h取局部微脑片固定进行LTP维持阶段超微结构的研究。分别与孵育相同时间而未予任何刺激的脑片和仅给予测试刺激的脑片作比较。运用图像分析仪分别对三组电镜结果进行以下参数的测量:(1)突触间隙的宽度;(2)突触后致密物(PSD)的厚度;(3)活性区的长度;和(4)突触界面曲率。用双盲法对突触数目进行计量,并用立体计量学方法对各种突触类型进行定量,所得数据用方差分析进行统计学处理。结果显示:(1)LTP形成后15h左右,其反应达到峰值,然后维持在最高水平一直到3h仍无下降趋势;(2)突触间隙的宽度较两个对照组明显增宽;(3)PSD的厚度也明显增厚;(4)活性区的面密度及突触界面曲率明显增加;(5)总突触数目和棘突触数目的数密度较空白对照明显增高;(6)穿孔性突触的数密度与对照组相比明显增加。结果提示:活性区面密度的增加及突触界面曲率的增大可能是LTP维持的形态学基础。穿孔性突触的形成与LTP的维持密切相关。  相似文献   

4.
Piccolo is one of the largest cytomatrix proteins present at active zones of chemical synapses, where it is suggested to play a role in recruiting and integrating molecules relevant for both synaptic vesicle exo- and endocytosis. Here we examined the retina of a Piccolo-mutant mouse with a targeted deletion of exon 14 in the Pclo gene. Piccolo deficiency resulted in its profound loss at conventional chemical amacrine cell synapses but retinal ribbon synapses were structurally and functionally unaffected. This led to the identification of a shorter, ribbon-specific Piccolo variant, Piccolino, present in retinal photoreceptor cells, bipolar cells, as well as in inner hair cells of the inner ear. By RT-PCR analysis and the generation of a Piccolino-specific antibody we show that non-splicing of intron 5/6 leads to premature translation termination and generation of the C-terminally truncated protein specifically expressed at active zones of ribbon synapse containing cell types. With in situ proximity ligation assays we provide evidence that this truncation leads to the absence of interaction sites for Bassoon, Munc13, and presumably also ELKS/CAST, RIM2, and the L-type Ca2 + channel which exist in the full-length Piccolo at active zones of conventional chemical synapses. The putative lack of interactions with proteins of the active zone suggests a function of Piccolino at ribbon synapses of sensory neurons different from Piccolo’s function at conventional chemical synapses.  相似文献   

5.
D A Moshkov  N R Tiras 《Tsitologiia》1987,29(2):156-160
The cytoskeleton of afferent chemical synapses, with various ultrastructure of contact zones, was examined in the Mauthner cells of the goldfish. The synapses with combined active zones and desmosome-like specialized contacts possessed a well developed cytoskeleton consisting of filaments and microtubules oriented towards the synaptic apposition. Regular arrays of synaptic vesicles oriented in the same direction were observed beyond and near the active zones. The cytoskeleton of the synapses lacking desmosome-like formations was diffusely organized throughout the boutons. The distribution of vesicles in the vicinity of active zones was also not ordered. The role of cytoskeleton in organization of the two morphologically distinct synapses is discussed. A special function of cytoskeleton as an intermediary between synaptoplasm and membrane is regarded as a necessary basis for plasticity of excitatory rather than inhibitory synapses.  相似文献   

6.
The cardiac ganglion in the lobster Homarus americanus was examined with a transmission electron microscope. Nerve terminals often existed in large aggregations surrounded by glial and connective tissue elements. Axo-axonic and axo-dendritic synapses were present. Six ultrastructurally different types of nerve terminal, each containing an abundance of vesicles, were distinguished: three formed discrete chemical synapses as indicated by typical release site morphology; three did not. The latter appear to be neurosecretory axon terminals of extrinsic neurons. More than one morphologically distinct type of synaptic vesicle occurred commonly in a given terminal, suggesting the presence of coexisting neurotransmitters and/or neuroregulatory factors. Symmetrical chemical synapses and electrotonic junctions between axons were present.  相似文献   

7.
Summary Using the electron-microscope technique of Lewis and Shute, we studied the localization of the acetylcholinesterase (AChE) activity in the hypoglossal, facial and spinal-cord motor nuclei of rats. The technique used selectively detects synapses with subsynaptic cisterns (type C synapses) as well as heavy deposits of reaction products in the rough endoplasmic reticulum, in fragments of the nuclear envelope, in some Golgi zones and on parts of the pericaryal plasma membrane, the axolemma and the dendritic membrane. In C synapses, AChE activity was located in the synaptie cleft and on the membrane of presynaptic boutons. Some C synapses exhibited distinct synaptic specialization in the form of multiple active zones. These zones were characterized by dense presynaptic projections, short dilations of the synaptic cleft, and postsynaptic densities localized between the postsynaptic membrane and the outer membrane of the subsynaptic cistern. Within the postsynaptic densities, rows of rod- or channel-like structures were observed. The subsynaptic cisterns were continuous with the positive rough endoplasmic reticulum. The results are discussed in terms of the possible role of C synapses in the regulation of AChE synthesis in postsynaptic cholinergic neurons and/or in the regulation of AChE release into the extracellular space as well as in the establishment of new synaptic contacts.In honour of Prof. P. van Duijn  相似文献   

8.
Henkemeyer M  Frisén J 《Neuron》2001,31(6):876-877
During the development of excitatory synapses, molecules cluster on dendrites to form postsynaptic densities, and specialized structures known as spines appear. EphB2 is demonstrated to control this process by associating with and phosphorylating a key postsynaptic molecule, syndecan-2, thereby initiating the maturation of dendritic spines.  相似文献   

9.
Noise exposure at low levels or low doses can damage hair cell afferent ribbon synapses without causing permanent threshold shifts. In contrast to reports in the mouse cochleae, initial damage to ribbon synapses in the cochleae of guinea pigs is largely repairable. In the present study, we further investigated the repair process in ribbon synapses in guinea pigs after similar noise exposure. In the control samples, a small portion of afferent synapses lacked synaptic ribbons, suggesting the co-existence of conventional no-ribbon and ribbon synapses. The loss and recovery of hair cell ribbons and post-synaptic densities (PSDs) occurred in parallel, but the recovery was not complete, resulting in a permanent loss of less than 10% synapses. During the repair process, ribbons were temporally separated from the PSDs. A plastic interaction between ribbons and postsynaptic terminals may be involved in the reestablishment of synaptic contact between ribbons and PSDs, as shown by location changes in both structures. Synapse repair was associated with a breakdown in temporal processing, as reflected by poorer responses in the compound action potential (CAP) of auditory nerves to time-stress signals. Thus, deterioration in temporal processing originated from the cochlea. This deterioration developed with the recovery in hearing threshold and ribbon synapse counts, suggesting that the repaired synapses had deficits in temporal processing.  相似文献   

10.
The small pyramidal neuron of the rat cerebral cortex   总被引:22,自引:0,他引:22  
Summary The pyramidal neurons in layers II and III of the rat parietal cortex have dendritic spines which form synapses with axon terminals. These synapses have synaptic clefts containing granular material that is concentrated towards the middle of the cleft to form a plaque. Only a small amount of dense material occurs on the cytoplasmic face of the presynaptic membrane, while there is a prominent dense layer, some 300 Å deep, in the dendritic spine. When the synapses formed by the smallest dendritic spines are examined in a frontal or en face plane of section this postsynaptic density has the form of a disc. In the synapses on larger spines, the disc is perforated to form a ring, and in the largest spines a number of perforations may occur. Because of these perforations, in larger synapses sections passing at right angles to the plane of the synaptic junction may show two or more separate postsynaptic densities. The possible significance of these findings is discussed.This work was supported by United States Public Health Service Research Grant No. NB-07016 from the National Institutes of Neurological Diseases and Blindness. The authors wish to express their sincere thanks to Lawrence McCarthy and Charmian Proskauer for their valuable assistance.  相似文献   

11.
Rearrangement of molecular structures at individual synapses can contribute to network plasticity. At mossy fiber presynaptic terminals, experience regulates both connectivity and structure of individual boutons. Moreover, dendritic spines and postsynaptic densities of glutamatergic synapses rapidly form and remodel in an activity-dependent manner. Recent studies of the postsynaptic scaffold molecule gephyrin have now revealed that also inhibitory shaft synapses undergo rapid remodeling at the postsynaptic scaffold level. Taking into account that also surface membrane receptors are highly mobile, local coincidence of receptors and scaffold elements in adjacent layers at dendritic shafts might depend on regulatory processes underlying synaptic plasticity.  相似文献   

12.
The central neuropile of thoracic ganglia in the central nervous system (CNS) of the cockroach Periplaneta americana contains synapses with characteristic pre- and post-synaptic membrane specializations and associated structures. These include dense pre-synaptic T-bars surrounded by synaptic vesicles, together with post-synaptic densities of varying electron opacity. Exocytotic release of synaptic vesicles is observed only rarely near presynaptic densities, but coated pits are seen at variable distances from them, and may be involved in membrane retrieval. After freeze-fracture, paralinear arrays of intramembranous articles (IMPs) are detected on the P face of many presynaptic terminals, with associated dimples indicative of vesicular release. The E face of these membranes exhibits protuberances complementary to the P face dimples, as well as scattered larger IMPs. Post-synaptic membranes possess dense IMP aggregates on the P face, some of which may represent receptor molecules. Electrophysiological studies with biotinylated alpha-bungarotoxin reveal that biotinylation does not inhibit the pharmacological effectiveness of the toxin in blocking acetylcholine receptors on an identified motoneurone in the metathoracic ganglion. Preliminary thin section ultrastructural analysis of this tissue post-treated with avidin-HRP or avidin-ferritin indicates that alpha-bungarotoxin-binding sites are localized at certain synapses in these insect thoracic ganglia.  相似文献   

13.
Ethanolic phosphotungstic acid (EPTA) has been used to elucidate the structure of certain organelles contained within retinal cells not clearly discernible using conventional preparations. Both synaptic and nonsynaptic components of the guinea pig neural retina have been analyzed. Within the photoreceptor (PR) cell EPTA-stained components include the connecting cilia, their basal bodies, and the root filament system. Cross-striated fibrillar organelles, similar in appearance to the root filaments, are also observed in the nuclear region, the synaptic terminal and other parts of the PR cell. The possible structural continuity and significance of these structures are discussed. Within retinal synapses of both the inner and outer plexiform layers, ribbons and associated paramembranous specializations are stained. The photoreceptor ribbons have a trialaminar structure with filamentous, tufted borders. Synaptic cleft material and postsynaptic densities are also stained. Bipolar cell synapses in the inner plexiform layer contain stained short ribbons as well as closely associated peg-like densities extending towards the presynaptic membrane.  相似文献   

14.
《Mammalian Biology》2014,79(3):163-169
The classical comparative literature on mammalian brain evolution has mainly focused on brain mass measurements because larger brains are more likely to have more neurons to process information. The phylogenetic expansion in the mass of the cerebellum is as significant as that of the cerebral cortex. The synapse, however, has recently been recognized as the basic unit of neuronal information processing, including neuroplasticity. Here we hypothesize significant absolute and relative increases in the functionally important granule-cell-Purkinje-cell (gcPc) synapses as a salient feature of the evolving cerebellum. To probe evolutionary constraints, we define the gcPc circuitry with ten degrees of freedom, including number of granule cells, Purkinje cells, lengths of the granule cell axonal segments, linear densities of synapses along them, and physical dimensions of Purkinje as well as granule cell dendritic structures. We show that although only two of the ten parameters are not constrained and therefore can exhibit independent, comparative changes, there is a dramatic increase in the number of gcPc synapses from the rodent to the human cerebellum. By assigning a value of unity for the mouse, the ratio of the number of gcPc synapses from mouse, rat, cat, non-human primate, and human is 1:5.5:236:620:20,000, which greatly exceeds the ratio of increase in cerebellar mass (1:6:48:180:3000). Dramatic changes in the number of gcPc synapses can therefore occur despite evolutionary constraints and only modest changes in parameters of the neuronal circuitry. Increases in the number of gcPc synapses have important functional consequences as these synapses enhance the capacity of the cerebellum to code and process information, which directly impact memory and learning in both motor and non-motor tasks.  相似文献   

15.
Gap junctions     
Electrical coupling through gap junctions constitutes a mode of signal transmission between neurons (electrical synaptic transmission). Originally discovered in invertebrates and in lower vertebrates, electrical synapses have recently been reported in immature and adult mammalian nervous systems. This has renewed the interest in understanding the role of electrical synapses in neural circuit function and signal processing. The present review focuses on the role of gap junctions in shaping the dynamics of neural networks by forming electrical synapses between neurons. Electrical synapses have been shown to be important elements in coincidence detection mechanisms and they can produce complex input-output functions when arranged in combination with chemical synapses. We postulate that these synapses may also be important in redefining neuronal compartments, associating anatomically distinct cellular structures into functional units. The original view of electrical synapses as static connecting elements in neural circuits has been revised and a considerable amount of evidence suggests that electrical synapses substantially affect the dynamics of neural circuits.  相似文献   

16.
Summary In the buccal ganglia of Helix pomatia synapses and sites of possible release of neurosecretory material were investigated electron microscopically. There is one chemical synapse and one electrotonic synapse in the neuropile of the ganglion. No synapses could be detected in the buccal nerves, cerebro-buccal connectives, or in the buccal commissure. The synaptic cleft of the chemical synapse is about 25 nm wide and contains electron-dense material whereas the cleft of the electrotonic synapse is only 5 nm wide. The presynaptic fibre of the chemical synapse contains clear vesicles and dense core vesicles. The release sites of neurosecretory material are found at the initial segment of the axons, at perikarya of neurones, and at the perineurium of the ganglion. If the terminals are located at the plasmalemma of a nerve cell, these release sites are called synapse-like structures according to Roubos and Moorer-van Delft (1979). The synapse-like structures show all structural elements of synapses, except the 25 nm cleft containing dense material; the cleft is only 15–20 nm wide here like the normal cleft between neurones and glial cells or between two fibres. If the secretory material is released at the periphery through the perineurium the terminal is called synaptoid according to Scharrer (1970). In all cases, i.e. synapses, synapse-like structures, and synaptoids, clear vesicles were found in the axon terminal. This finding provides further evidence that clear vesicles always accompany the release of substances from axon endings.  相似文献   

17.
Auditory afferents terminating as mixed, electrical, and chemical, synapses on the goldfish Mauthner cells constitute an ideal experimental model to study the properties of gap junctions in the nervous system as well as to explore possible functional interactions with the other major form of interneuronal communication--chemically mediated synapses. By combining confocal microscopy and freeze-fracture replica immunogold labeling (FRIL), we found that gap junctions at these synapses contain connexin35 (Cx35), the fish ortholog of the neuron-specific human and mouse connexin36 (Cx36). Conductance of gap junction channels at these endings is known to be dynamically modulated by the activity of their co-localized chemically mediated glutamatergic synapses. By using simultaneous pre- and postsynaptic recordings at these single terminals, we demonstrate that such functional interaction takes place in the same ending, within a few micrometers. Accordingly, we also found evidence by confocal and FRIL double-immunogold labeling that the NR1 subunit of the NMDA glutamate receptor, proposed to be a key regulatory element, is present at postsynaptic densities closely associated with gap junction plaques containing Cx35. Given the widespread distribution of Cx35- and Cx36-mediated electrical synapses and glutamatergic synapses, our data suggest that the local functional interactions observed at these identifiable junctions may also apply to other electrical synapses, including those in mammalian brain.  相似文献   

18.
19.
Auditory afferents terminating as mixed, electrical, and chemical, synapses on the goldfish Mauthner cells constitute an ideal experimental model to study the properties of gap junctions in the nervous system as well as to explore possible functional interactions with the other major form of interneuronal communication—chemically mediated synapses. By combining confocal microscopy and freeze-fracture replica immunogold labeling (FRIL), we found that gap junctions at these synapses contain connexin35 (Cx35), the fish ortholog of the neuron-specific human and mouse connexin36 (Cx36). Conductance of gap junction channels at these endings is known to be dynamically modulated by the activity of their co-localized chemically mediated glutamatergic synapses. By using simultaneous pre- and postsynaptic recordings at these single terminals, we demonstrate that such functional interaction takes place in the same ending, within a few micrometers. Accordingly, we also found evidence by confocal and FRIL double-immunogold labeling that the NR1 subunit of the NMDA glutamate receptor, proposed to be a key regulatory element, is present at postsynaptic densities closely associated with gap junction plaques containing Cx35. Given the widespread distribution of Cx35- and Cx36-mediated electrical synapses and glutamatergic synapses, our data suggest that the local functional interactions observed at these identifiable junctions may also apply to other electrical synapses, including those in mammalian brain.  相似文献   

20.
Novel chemical and electrical connections form between neurons not normally connected in the buccal ganglia of the snail Helisoma. We examined the cellular and environmental conditions required for the formation of each type of connection. Previous work in situ showed that novel electrical connections could form in response to axotomy. We have now found that axotomy can evoke the formation of novel unidirectional chemical connections between neurons B5 and B4 in addition to a novel electrical connection. The novel chemical connections display all of the normal properties of chemical synapses in Helisoma ganglia. These connections, however, are transient in nature and break 4 days following axotomy. Previous work has shown that conjoint outgrowth is required for the formation of electrical connections. In cell culture we have investigated whether conjoint outgrowth is also required for chemical synaptogenesis. Using neurons B5 and B19 we have found that when neuron pairs make contact in cell culture, under conditions of synchronous neurite extension, both electrical and chemical synapses form. However, if one neuron has ceased extension prior to contact by a growing neuron, electrical synapses never form (Hadley et al., 1983, 1985) but chemical synapses do form. Furthermore, the addition of serotonin (10(-6) M) to culture medium to inhibit neurite extension of B19, but not that of B5, selectively prevents the formation of electrical connections while permitting the formation of chemical synapses. Thus, the timing of contact in relation to the state of neurite extension can specify the type of connection a given neuron can form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号