首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Anthropogenic disturbances are known to modify plant–animal interactions such as those involving the leaf‐cutting ants, the most voracious and proliferating herbivore across human‐modified landscapes in the Neotropics. Here, we evaluate the effect of chronic anthropogenic disturbance (e.g., firewood collection, livestock grazing) and vegetation seasonality on foraging area, foliage availability in the foraging area, leaf consumption and herbivory rate of the leaf‐cutting ant Atta opaciceps in the semiarid Caatinga, a mosaic of dry forest and scrub vegetation in northeast Brazil. Contrary to our initial expectation, the foraging area was not affected by either disturbance intensity or the interaction between season and disturbance intensity. However, leaf consumption and herbivory rate were higher in more disturbed areas. We also found a strong effect of seasonality, with higher leaf consumption and herbivory rate in the dry season. Our results suggest that the foraging ecology of leaf‐cutting ants is modulated by human disturbance and seasonality as these two drivers affect the spectrum and the amount of resources available for these ants in the Caatinga. Despite the low productivity of Caatinga vegetation, the annual rates of biomass consumption by A. opaciceps are similar to those reported from other leaf‐cutting ants in rain forests and savannas. This is made possible by maintaining high foraging activity even in the peak of the dry season and taking benefit from any resource available, including low‐quality items. Such compensation highlights the adaptive capacity of LCA to persist or even proliferate in human‐modified landscapes from dry to rain forests.  相似文献   

2.
1. The aphid Uroleucon nigrotuberculatum Olive, which is specialised to the tall goldenrod, Solidago altissima L., in its native range, has become a dominant species on the introduced tall goldenrod in Japan. How this exotic aphid influenced arthropod communities on the introduced tall goldenrod in aphid‐present (spring) and aphid‐absent (autumn) seasons was examined, using an aphid removal experiment. 2. In spring, aphid presence increased ant abundance because aphid honeydew attracted foraging ant workers. A significant negative correlation was found between the numbers of ants and herbivorous insects other than aphids on the aphid‐exposed plants, but no significant correlation was detected on the aphid‐free plants. Thus, the aphid presence was likely to decrease the abundance of co‐occurring herbivorous insects through removal behaviour of the aphid‐tending ants. There were no significant differences in plant traits between the aphid‐exposed and aphid‐free plants. 3. In autumn, the numbers of lateral shoots and leaves, and the leaf nitrogen content were increased in response to the aphid infestation in spring. Because of the improvement of plant traits by aphid feeding, the abundance of leaf chewers increased on aphid‐exposed plants. In contrast, the abundance of sap feeders decreased on the aphid‐exposed plants. In particular, the dominant scale insect among sap feeders, Parasaissetia nigra Nietner, decreased, followed by a decrease in the abundance of ants attending P. nigra. Thus, aphid feeding may have attenuated the negative impacts of the tending ants on leaf chewers. 4. Aphid presence did not change herbivore species richness but changed the relative density of dominant herbivores, resulting in community‐wide effects on co‐occurring herbivores through ant‐mediated indirect effects, and on temporally separated herbivores through plant‐ and ant‐mediated indirect effects. The aphid also altered predator community composition by increasing and decreasing the relative abundance of aphid‐tending ants in the spring and autumn, respectively.  相似文献   

3.
Ecosystem engineers are species that affect others through the provision of habitat rather than consumptive resources. The extent to which ecosystem engineers can indirectly affect entire food webs, however, is poorly understood. Epiphytic tank bromeliads (Bromeliaceae) are ecosystem engineers that are common throughout the Neotropics, and are associated with a variety of predatory arthropods. Here, we examine if bromeliads, by increasing predator densities, indirectly benefit their support tree through reduction in herbivorous insects and leaf damage. We observed and manipulated bromeliad densities in Costa Rican orange orchards, and measured impacts on leaf damage and arboreal and bromeliad invertebrate communities in two different seasons. Our results show that bromeliads are associated with predatory and herbivorous invertebrates but not leaf damage. Bromeliads were correlated with increased densities of their associated predators, especially ants and hunting spiders, but we could not confirm a causal link. Associations with bromeliads changed over time, with seasonal shifts interfering with responses to our manipulations. Bromeliads had a reduced association with predators in the dry season. Moreover, a null association between bromeliads and herbivorous invertebrates in the dry season unexpectedly became positive in the wet season. In summary, we have only limited evidence that bromeliads indirectly promote the top‐down control of arboreal herbivores; instead, our manipulations suggest that bromeliads increase herbivore densities in the wet season. This research suggests that although bromeliads may act as ecosystem engineers, indirectly influencing the invertebrate food web on support trees, their effects are trophically complex and seasonally dependent. Abstract in Spanish is available with online material.  相似文献   

4.
The foraging behaviour of social insects is highly flexible because it depends on the interplay between individual and collective decisions. In ants that use foraging trails, high ant flow may entail traffic problems if different workers vary widely in their walking speed. Slow ants carrying extra‐large loads in the leaf‐cutting ant Atta cephalotes L. (Hymenoptera: Formicidae) are characterized as ‘highly‐laden’ ants, and their effect on delaying other laden ants is analyzed. Highly‐laden ants carry loads that are 100% larger and show a 50% greater load‐carrying capacity (i.e. load size/body size) than ‘ordinary‐laden’ ants. Field manipulations reveal that these slow ants carrying extra‐large loads can reduce the walking speed of the laden ants behind them by up to 50%. Moreover, the percentage of highly‐laden ants decreases at high ant flow. Because the delaying effect of highly‐laden ants on nest‐mates is enhanced at high traffic levels, these results suggest that load size might be adjusted to reduce the negative effect on the rate of foraging input to the colony. Several causes have been proposed to explain why leaf‐cutting ants cut and carry leaf fragments of sizes below their individual capacities. The avoidance of delay in laden nest‐mates is suggested as another novel factor related to traffic flow that also might affect load size selection The results of the presennt study illustrate how leaf‐cutting ants are able to reduce their individual carrying performance to maximize the overall colony performance.  相似文献   

5.
Abstract 1. The leaf‐cutting ants practise an advanced system of mycophagy where they grow a fungus as a food source. As a consequence of parasite threats to their crops, they have evolved a system of morphological, behavioural, and chemical defences, particularly against fungal pathogens (mycopathogens). 2. Specific fungal diseases of the leaf‐cutting ants themselves have not been described, possibly because broad spectrum anti‐fungal defences against mycopathogens have reduced their susceptibility to entomopathogens. 3. Using morphological and molecular tools, the present study documents three rare infection events of Acromyrmex and Atta leaf‐cutting ants by Ophiocordyceps fungi, agenus of entomopathogens that is normally highly specific in its host choice. 4. As leaf‐cutting ants have been intensively studied, the absence of prior records of Ophiocordyceps suggests that these infections may be a novel event and that switching from one host to another is possible. To test the likelihood of this hypothesis, host switching was experimentally induced, and successfully achieved, among five distinct genera of ants, one of which was in a different sub‐family than the leaf‐cutter ants. 5. Given the substantial differences among the five host ants, the ability of Ophiocordyceps to shift between such distant hosts is remarkable; the results are discussed in the context of ant ecological immunology and fungal invasion strategies.  相似文献   

6.
Major shifts in the availability of palatable plant resources are of key relevance to the ecology of leaf‐cutting ants in human‐modified landscapes. However, our knowledge is still limited regarding the ability of these ants to adjust their foraging strategy to dynamic environments. Here, we examine a set of forest stand attributes acting as modulating forces for the spatiotemporal architecture of foraging trail networks developed by Atta cephalotes L. (Hymenoptera: Formicidae: Attini). During a 12‐month period, we mapped the foraging systems of 12 colonies located in Atlantic forest patches with differing size, regeneration age, and abundance of pioneer plants, and examined the variation in five trail system attributes (number of trails, branching points, leaf sources, linear foraging distance, and trail complexity) in response to these patch‐related variables. Both the month‐to‐month differences (depicted in annual trail maps) and the steadily accumulating number of trails, trail‐branching points, leaf sources, and linear foraging distance illustrated the dynamic nature of spatial foraging and trail complexity. Most measures of trail architecture correlated positively with the number of pioneer trees across the secondary forest patches, but no effects from patch age and size were observed (except for number of leaf sources). Trail system complexity (measured as fractal dimension; Df index) varied from 1.114 to 1.277 along the 12 months through which ant foraging was monitored, with a marginal trend to increase with the abundance of pioneer stems. Our results suggest that some leaf‐cutting ant species are able to generate highly flexible trail networks (via fine‐tuned adjustment of foraging patterns), allowing them to profit from the continuous emergence/recruitment of palatable resources.  相似文献   

7.
The recovery of natural ecological processes after disturbance is poorly understood. Some disturbances may be so severe as to set ecosystems onto a new trajectory. The Canaan Valley National Wildlife Refuge in West Virginia protects a unique high‐altitude wetland that was heavily disturbed by logging 100 years before present (BP) and has since transitioned to a new ecological state (shrub wetland). Refuge managers interested in preserving and restoring ecosystem states expressed concern about lingering impacts of previous disturbances (logging, railroads, beaver, deer, fire). Available data suggested hydrologic impacts from a remnant railroad grade, but managers had insufficient quantitative data to assess these impacts. We initiated a fine‐scale assessment of topography, vegetation distribution, and hydrology to assess impacts from the remnant rail grade using lidar data, vegetation surveys, and piezometers. We developed topographic models, hydrological models, and mapped vegetation distribution. We developed statistical models to assess relationships between vegetation communities, hydrology, and distance to the rail grade. Surprisingly, we found that hydrologic flow paths did not conform to expectation and were not restricted by remnant land use features. For the most part, vegetation communities are responding to topographic and environmental gradients that existed prior to disturbance. Use of highly detailed topographic data (lidar), field hydrology, and vegetation studies allowed us to more accurately assess hydrologic and vegetation regimes, eliminating the need for mitigation, thus saving significant resources.  相似文献   

8.
9.
Ecology of forest insect invasions   总被引:1,自引:0,他引:1  
Forests in virtually all regions of the world are being affected by invasions of non-native insects. We conducted an in-depth review of the traits of successful invasive forest insects and the ecological processes involved in insect invasions across the universal invasion phases (transport and arrival, establishment, spread and impacts). Most forest insect invasions are accidental consequences of international trade. The dominant invasion ‘pathways’ are live plant imports, shipment of solid wood packaging material, “hitchhiking” on inanimate objects, and intentional introductions of biological control agents. Invading insects exhibit a variety of life histories and include herbivores, detritivores, predators and parasitoids. Herbivores are considered the most damaging and include wood-borers, sap-feeders, foliage-feeders and seed eaters. Most non-native herbivorous forest insects apparently cause little noticeable damage but some species have profoundly altered the composition and ecological functioning of forests. In some cases, non-native herbivorous insects have virtually eliminated their hosts, resulting in major changes in forest composition and ecosystem processes. Invasive predators (e.g., wasps and ants) can have major effects on forest communities. Some parasitoids have caused the decline of native hosts. Key ecological factors during the successive invasion phases are illustrated. Escape from natural enemies explains some of the extreme impacts of forest herbivores but in other cases, severe impacts result from a lack of host defenses due to a lack of evolutionary exposure. Many aspects of forest insect invasions remain poorly understood including indirect impacts via apparent competition and facilitation of other invaders, which are often cryptic and not well studied.  相似文献   

10.
Aim To enhance current attempts to understand biodiversity patterns by using an historical ecology approach to highlight the over‐riding influence of land‐use history in creating past, current and future patterns of biodiversity in fragmented agricultural landscapes. Methods We develop an integrative conceptual framework for understanding spatial and temporal variations in landscape patterns in fragmented agricultural landscapes by presenting five postulates (hypotheses) which highlight the important role of historical, anthropogenic disturbance regimes. We then illustrate each of these postulates with examples drawn from fragmented woodlands in agricultural areas of south‐eastern Australia, and discuss these findings in an international context. Location examples are drawn from agricultural areas in south‐eastern Australia. Results We conclude that there is limited potential to refine our understanding of patterns of biodiversity in human‐modified landscapes based on traditional concepts of island biogeography, or simple assumptions of ongoing destruction and degradation. Instead, we propose that in agricultural landscapes that were largely cleared over a century ago: (1) present‐day remnant vegetation patterns are not accidental, but are logically arrayed due to historic land‐use decisions, (2) historic anthropogenic disturbances have a major influence on current ecosystem conditions and diversity patterns, and (3) the condition of remnant ecosystems is not necessarily deteriorating rapidly. Main conclusions An historical ecology approach can enhance our understanding of why different species and ecosystem states occur where they do, and can explain internal variations in ecological conditions within remnant ecosystems, too often casually attributed to the ‘mess of history’. This framework emphasizes temporal changes (both past and future) in biotic patterns and processes in fragmented agricultural landscapes. Integration of spatially and temporally explicit historical land‐use information into ecological studies can prove extremely useful to test hypotheses of the effects of changes in landscape processes, and to enhance future research, restoration and conservation management activities.  相似文献   

11.
Patch‐size distribution and plant cover are strongly associated to arid ecosystem functioning and may be a warning signal for the onset of desertification under changes in disturbance regimes. However, the interaction between regional productivity level and human‐induced disturbance regime as drivers for vegetation structure and dynamics remain poorly studied. We studied grazing disturbance effects on plant cover and patchiness in three plant communities located along a regional productivity gradient in Patagonia (Argentina): a semi‐desert (low‐productivity community), a shrub‐grass steppe (intermediate‐productivity community) and a grass steppe (high‐productivity community). We sampled paddocks with different sheep grazing pressure (continuous disturbance gradients) in all three communities. In each paddock, the presence or absence of perennial vegetation was recorded every 10 cm along a 50 m transect. Grazing effects on vegetation structure depended on the community and its association to the regional productivity. Grazing decreased total plant cover while increasing both the frequency of small patches and the inter‐patch distance in all communities. However, the size of these effects was the greatest in the high‐productivity community. Dominant species responses to grazing explained vegetation patch‐ and inter‐patch‐size distribution patterns. As productivity decreases, dominant species showed a higher degree of grazing resistance, probably because traits of species adapted to high aridity allow them to resist herbivore disturbance. In conclusion, our findings suggest that regional productivity mediates grazing disturbance impacts on vegetation mosaic. The changes within the same range of grazing pressure have higher effects on communities found in environments with higher productivity, markedly promoting their desertification. Understanding the complex interactions between environmental aridity and human‐induced disturbances is a key aspect for maintaining patchiness structure and dynamics, which has important implications for drylands management.  相似文献   

12.
Restoration practices incorporating timber harvest (e.g. to remove undesirable species or reduce tree densities) may generate unmerchantable wood debris that is piled and burned for fuel reduction. Slash pile burns are common in longleaf pine ecosystem restoration that involves hardwood removal before reintroduction of frequent prescribed fire. In this context, long‐lasting effects of slash pile burns may complicate restoration outcomes due to unintended alterations to vegetation, soils, and the soil seed bank. In this study, our objectives were to (1) examine alterations to the soil seed bank, soil physical and chemical characteristics, and initial vegetation recolonization following burn and (2) determine the rate of return of soil and vegetation characteristics to pre‐burn conditions. We found that burning of slash piles (composed of scores of whole trees) results in elevated nutrient levels and significant impacts on vegetation and the soil seed bank, which remain evident for at least 6 years following burn. In this ecosystem, formerly weakly acidic soils become neutral to basic and levels of P remain significantly higher. Following an initial decrease after burn, total soil N increases with time since burn. These changes suggest that not only does pile burning create a fire scar initially devoid of biota, but it also produces an altered soil chemical environment, with possible consequences for long‐term ecosystem restoration efforts in landscapes including numerous fire scars. To facilitate restoration trajectories, further adaptive management to incorporate native plant propagules or suppress encroaching hardwoods within fire scars may be warranted in fire‐dependent ecosystems.  相似文献   

13.
In Europe, agri‐environmental schemes (AES) have been introduced in response to concerns about farmland biodiversity declines. Yet, as AES have delivered variable results, a better understanding of what determines their success or failure is urgently needed. Focusing on pollinating insects, we quantitatively reviewed how environmental factors affect the effectiveness of AES. Our results suggest that the ecological contrast in floral resources created by schemes drives the response of pollinators to AES but that this response is moderated by landscape context and farmland type, with more positive responses in croplands (vs. grasslands) located in simple (vs. cleared or complex) landscapes. These findings inform us how to promote pollinators and associated pollination services in species‐poor landscapes. They do not, however, present viable strategies to mitigate loss of threatened or endangered species. This indicates that the objectives and design of AES should distinguish more clearly between biodiversity conservation and delivery of ecosystem services.  相似文献   

14.
Abstract Fire and herbivory are known to modify plant community structure. Many studies have suggested that fire ashes may increase soil nutrients in dystrophic soils. Herbivores may also change plant community structure through direct effects of herbivory and affecting nutrient cycling. Leaf‐cutting ants were traditionally viewed as herbivores, although their role may be more complex, because their nests affect both chemical and physical soil properties, thus affecting plants indirectly. We investigated the effects of frequent burning and of leaf‐cutting ants on the nutrient status of an herbaceous and a shrub species occurring in the Brazilian Cerrado, a habitat that is characterized by natural burnings. The proximity of ant nests resulted in an increase of nutrients in the leaves of both vegetation strata, whereas burning sometimes resulted in a decrease of nutrients. Our results do not lead to a possible positive effect of fire on plant nutrient content. On the other hand, ant nests may represent an important source of nutrients for plants on the nutrient‐depleted Cerrado soils and may accelerate vegetation recovery after burning.  相似文献   

15.
Leaf‐cutting ants often avoid contact with their waste because it harbors microorganisms that are dangerous to the ants and their symbiotic fungus. Therefore, the use of ant waste (i.e., refuse dumps) has been proposed as a deterrent method against leafcutter attack. We tested experimentally whether the age of the refuse dump (fresh vs. old) affects the herbivory‐deterrent effect against the leaf‐cutting ant Acromyrmex lobicornis Emery (Hymenoptera: Formicidae). Refuse placed around seedlings significantly delayed the initiation attacks of leaf‐cutting ants, and this deterrent effect decreased gradually over a period of 30 days. The initial strength of this decrease was the same for newly‐discarded ( ‘new’) refuse and refuse from the bottom of the ants’ waste pile (‘old’ refuse). However, the loss of deterrent effect over time was more rapid for new than old refuse. A further experimental manipulation, replacement of refuse every 3 days, had no effect on the deterrent effect for old refuse, but increased this effect for new refuse, although the amount of this increase gradually weakened over the course of the 30‐day experiment. We speculate on the possible causes of these effects, their consequences for the hygienic behavior of leaf‐cutting ants, and on the use of ant debris as short‐term control method against leaf‐cutting ants.  相似文献   

16.
Agriculture of varying management intensity dominates fragmented tropical areas and differentially impacts organisms across and within taxa. We examined impacts of local and landscape characteristics on four groups of ants in an agricultural landscape in Chiapas, Mexico comprised of forest fragments and coffee agroecosystems varying in habitat quality. We sampled ground ants found in leaf litter and rotten logs and arboreal ants found in hollow coffee twigs and on tree trunks. Then using vegetation and agrochemical indices and conditional inference trees, we examined the relative importance of local (e.g. vegetation, elevation, agrochemical) and landscape variables (e.g. distance to and amount of nearby forest and rustic coffee) for predicting richness and abundance of ants. Leaf litter ant abundance increased with vegetation complexity; richness and abundance of ants from rotten logs, twig-nests, and tree trunks were not affected by vegetation complexity. Agrochemical use did not affect species richness or abundance of any ant group. Several local factors (including humus mass, degree of decay of logs, number of hollow twigs, tree circumference, and absence of fertilizers) were significant positive predictors of abundance and richness of some ant groups. Two landscape factors (forest within 200 m, and distance from forest) predicted richness and abundance of twig-nesting and leaf litter ants. Thus, different ant groups were influenced by different characteristics of agricultural landscapes, but all responded primarily to local characteristics. Given that ants provide ecosystem services (e.g. pest control) in coffee farms, understanding ant responses to local and landscape characteristics will likely inform farm management decisions.  相似文献   

17.
We studied the indirect effects of an aphid Uroleucon nigrotuberculatum on density and performance of herbivorous insects through tending ants and modification of plant traits on a tall goldenrod Solidago altissima in Japan. To examine ant-mediated indirect effects of the aphid on the leafhopper and geometrid moth caterpillars, we conducted an experiment in which we manipulated aphid densities. The aphid decreased the density of these herbivorous insects through ant-mediated indirect effects, because honeydew scattered by the aphid-attracted ants that then removed them. To examine plant-mediated indirect effects of the aphid on two temporally separated insects, a scale insect and a grasshopper, we compared the density and performance of these herbivorous insects on aphid-inoculated plants and aphid-free plants. Aphid-induced plant modifications had different effects on the scale insect and grasshopper. The aphid indirectly decreased the density and survivorship of the scale insect. On the other hand, the number of grasshoppers increased as a result of the increased number of leaves and the increased nitrogen content induced by prior aphid feeding. However, aphid infestation did not affect the survival of the grasshopper. Thus, the aphid has large indirect effects on co-occurring herbivorous insects through the removal behavior of tending ants and on temporally separated herbivorous insects through changes in quality and quantity of the tall goldenrod.  相似文献   

18.
Insect–plant interactions occur in several ways and have considerable environmental and ecological importance. Many feeding strategies have evolved among herbivorous insects, with host–herbivore systems likely being influenced by trophobionts with ants. We investigated how these interactions vary across elevation gradients by evaluating the structure of the herbivorous insect community and ants associated with Baccharis dracunculifolia at three distinct elevations (800, 1100, and 1400 m a.s.l.) on a mountain in southeastern Brazil. Moreover, we evaluated the diversity and specialisation of interactions between herbivores and host plants along the elevational gradient. We sampled herbivores and ants on 60 plants at each elevation (totalling 180 plant individuals). Herbivore species composition differed among elevations, as did interaction diversity and specialisation. Richness and abundance of chewing insects increased with elevation, while β‐diversity among patches of the host plant was higher at the lowest elevation, probably due to the patchy occurrence of B. dracunculifolia. Richness and abundance of sap‐sucking insects were higher at the intermediate elevation, possibly due to local environmental conditions. We observed a positive relationship between ant and herbivore trophobiont richness on B. dracunculifolia. We found that interactions were more specialised and less diverse at higher elevations compared to the lowest elevation. Changes in vegetation and environmental variables shaped species distributions and their ecological interactions along the elevation gradient. Our study demonstrates that increased elevation changes the structure and patterns of interactions of the herbivore insect guilds associated with the host plant B. dracunculifolia. Ant effects depend on the context, the environment, and the species of ants involved, and are essential for the presence of insect trophobionts.  相似文献   

19.
农田景观格局对害虫天敌生态控害功能的调控作用   总被引:2,自引:0,他引:2  
如何提升农田景观的生态服务功能是当前景观生态学和害虫防治学的前沿研究热点.基于区域农田景观格局可显著调节植物-植食性昆虫-天敌之间相互关系的理论基础,本文系统概括总结了农田景观格局及其变化对农田重要天敌多样性与生态控害功能的影响.从不同天敌类群的角度,分析了农田景观格局对捕食性天敌、寄生性天敌、有益微生物及其生态控害功能的调控作用.同时,对优化农田景观作物布局、采取合理的植被生境管理策略进行了展望.本文可为应用植被生境管理提升农田景观中天敌的生态系统服务功能提供参考,进一步促进区域生态农业响应"化学农药减量施用"的战略目标提供理论支撑.  相似文献   

20.
Habitat fragmentation is currently the most pervasive anthropogenic disturbance in tropical forests and some species of leaf‐cutting ants of the genus Atta (dominant herbivores in the neotropics) have become hyper‐abundant in forest edges where their nests directly impact up to 6% of the forest area. Yet, their impacts on the regeneration dynamics of fragmented forests remain poorly investigated. Here we examine the potential of Atta cephalotes nests to function as ecological filters impacting tree recruitment. Growth, survival and biomass partitioning of experimentally planted seedlings (six tree species) were examined at eight spatially independent A. cephalotes colonies in a large Atlantic Forest fragment. Seedling performance and fate (leaf numbers and damage) were monitored up to 27 months across three habitats (nest centre, nest edge and forest understorey). Plants at illuminated nest centres showed twice the gross leaf gain as understorey individuals. Simultaneously, seedlings of all species lost many more leaves at nests than in the forest understorey, causing a negative net leaf gain. Net leaf gain in the shaded understorey ranged from zero (Licania and Thyrsodium species) to substantial growth for Copaifera and Virola, and intermediate levels little above zero for Protium and Pouteria. Also seedling survival differed across habitats and species, being typically low in the centre and at the edge of nests where seedlings were often completely defoliated by the ants. Lastly, seedling survival increased strongly with seed size at nest edges while there was no such correlation in the forest. Our results suggest that Atta nests operate as ecological filters by creating a specific disturbance regime that differs from other disturbances in tropical forests. Apparently, Atta nests favour large‐seeded tree species with resprouting abilities and the potential to profit from a moderate, nest‐mediated increase in light availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号