首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ben Saunders 《Bioethics》2019,33(9):1022-1028
It is widely assumed that the strongest case for permitting non‐medical sex selection is where parents aim at family balance. This piece criticizes one representative attempt to justify sex selection for family balance. Kluge (2007) assumes that some couples may seek sex selection because they hold discriminatory values, but this need not impugn those who merely have preferences, without evaluative commitments, for a particular sex. This is disputed by those who see any sex selection as inherently sexist because it upholds stereotypes about the sexes. This article takes an alternative approach. I argue that, even if we accept that preference‐based selection is unobjectionable, a policy permitting selection for family balancing does a poor job of distinguishing between value‐based and preference‐based selection. If we wish to permit only preference‐based sex selection we should seek to identify parents’ motives. If we wish to justify a family balancing policy, other arguments are needed.  相似文献   

2.
Mutation-Selection Balance with Stochastic Selection   总被引:1,自引:1,他引:0       下载免费PDF全文
Daniel L. Hartl 《Genetics》1977,86(3):687-696
Diffusion theory has been used to analyze a model of mutation-selection balance in which the selection process is assumed to be stochastic in time. The limiting outcome of the mutation-stochastic selection process is determined qualitatively by the geometric mean fitnesses of the genotypes, and the conditions for fixation or polymorphism are similar to those that determine the outcome of the mutation-selection process when selection is constant. However, in the case of a completely recessive allele, detailed numerical study of the polymorphism associated with stochastic selection has shown that the average allele frequency maintained is greater than the equilibrium frequency expected when selection is constant, even when the geometric mean fitness of the recessive homozygotes is identical in the stochastic and deterministic models. Thus, allele frequencies in natural populations that are too high to be plausibly explained by a balance between mutation and constant selection can be accounted for if selection is stochastic.  相似文献   

3.
A model of stabilizing selection on a multilocus character is proposed that allows the maintenance of stable allelic polymorphism and linkage disequilibrium. The model is a generalization of Lerner's model of homeostasis in which heterozygotes are less susceptible to environmental variation and hence are superior to homozygotes under phenotypic stabilizing selection. The analysis is carried out for weak selection with a quadratic-deviation model for the stabilizing selection. The stationary state is characterized by unequal allele frequencies, unequal proportions of complementary gametes, and a reduction of the genetic (and phenotypic) variance by the linkage disequilibrium. The model is compared with Mather's polygenic balance theory, with models that include mutation-selection balance, and others that have been proposed to study the role of linkage disequilibrium in quantitative inheritance.  相似文献   

4.
Long-term selection response could slow down from a decline in genetic variance or in selection differential or both. A model of conflict between truncation and stabilizing selection in infinite population size is analysed in terms of the reduction in selection differential. Under the assumption of a normal phenotypic distribution, the limit to selection is found to be a function of kappa, the intensity of truncation selection, omega 2, a measure of the intensity of stabilizing selection, and sigma 2, the phenotypic variance of the character. The maintenance of genetic variation at this limit is also analyzed in terms of mutation-selection balance by the use of the "House-of-cards" approximation. It is found that truncation selection can substantially reduce the equilibrium genetic variance below that when only stabilizing selection is acting, and the proportional reduction in variance is greatest when the selection is very weak. When truncation selection is strong, any further increase in the strength of selection has little further influence on the variance. It appears that this mutation-selection balance is insufficient to account for the high levels of genetic variation observed in many long-term selection experiments.  相似文献   

5.
We evaluate Sewall Wright's three-phase “shifting balance” theory of evolution, examining both the theoretical issues and the relevant data from nature and the laboratory. We conclude that while phases I and II of Wright's theory (the movement of populations from one “adaptive peak” to another via drift and selection) can occur under some conditions, genetic drift is often unnecessary for movement between peaks. Phase III of the shifting balance, in which adaptations spread from particular populations to the entire species, faces two major theoretical obstacles: (1) unlike adaptations favored by simple directional selection, adaptations whose fixation requires some genetic drift are often prevented from spreading by barriers to gene flow; and (2) it is difficult to assemble complex adaptations whose constituent parts arise via peak shifts in different demes. Our review of the data from nature shows that although there is some evidence for individual phases of the shifting balance process, there are few empirical observations explained better by Wright's three-phase mechanism than by simple mass selection. Similarly, artificial selection experiments fail to show that selection in subdivided populations produces greater response than does mass selection in large populations. The complexity of the shifting balance process and the difficulty of establishing that adaptive valleys have been crossed by genetic drift make it impossible to test Wright's claim that adaptations commonly originate by this process. In view of these problems, it seems unreasonable to consider the shifting balance process as an important explanation for the evolution of adaptations.  相似文献   

6.
The present series of studies attempts to accommodate interaction among individuals in evolutionary theory. The interaction phenomenon is characterized by two dimensions (direct and associate) of gene activity. For optimal selection results, a balance between the two dimensions must occur. In the first paper of the series, it was shown that random interactions resulted in an unbalanced selection response in that the direct, but not associate, effects were included in the expression for gene frequency change. The next three papers of the series (II, III and IV) were designed to determine whether or not selection with life-history models that involved non-random interactions would be useful in ameliorating the problem of selection balance.In the present study, non-randomness is generated by restricting interactions to inbred individuals. It is demonstrated that this form of non-random gene association within interacting genotypes does not improve selection balance. Thus restricting interaction to groups of inbred individuals does not result in the introduction of associate effects into the expression for gene frequency change. It is shown that inbreeding in the base population merely accelerates the unbalanced response normally occurring when selection operates on random, non-inbred individuals.  相似文献   

7.
Abstract. We investigate maintenance of quantitative genetic variation at mutation-selection balance for multiple traits. The intrinsic strength of real stabilizing selection on one of these traits denoted the "target trait" and the observed strength of apparent stabilizing selection on the target trait can be quite different: the latter, which is estimable, is much smaller (i.e., implying stronger selection) than the former. Distinguishing them may enable the mutation load to be relaxed when considering multivariate stabilizing selection. It is shown that both correlations among mutational effects and among strengths of real stabilizing selection on the traits are not important unless they are high. The analysis for independent situations thus provides a good approximation to the case where mutant and stabilizing selection effects are correlated. Multivariate stabilizing selection can be regarded as a combination of stabilizing selection on the target trait and the pleiotropic direct selection on fitness that is solely due to the effects of real stabilizing selection on the hidden traits. As the overall fitness approaches a constant value as the number of traits increases, multivariate stabilizing selection can maintain abundant genetic variance only under quite weak selection. The common observations of high polygenic variance and strong stabilizing selection thus imply that if the mutation-selection balance is the true mechanism of maintenance of genetic variation, the apparent stabilizing selection cannot arise solely by real stabilizing selection simultaneously on many metric traits.  相似文献   

8.
Domesticated species frequently spread their genes into populations of wild relatives through interbreeding. The domestication process often involves artificial selection for economically desirable traits. This can lead to an indirect response in unknown correlated traits and a reduction in fitness of domesticated individuals in the wild. Previous models for the effect of gene flow from domesticated species to wild relatives have assumed that evolution occurs in one dimension. Here, I develop a quantitative genetic model for the balance between migration and multivariate stabilizing selection. Different forms of correlational selection consistent with a given observed ratio between average fitness of domesticated and wild individuals offsets the phenotypic means at migration–selection balance away from predictions based on simpler one-dimensional models. For almost all parameter values, correlational selection leads to a reduction in the migration load. For ridge selection, this reduction arises because the distance the immigrants deviates from the local optimum in effect is reduced. For realistic parameter values, however, the effect of correlational selection on the load is small, suggesting that simpler one-dimensional models may still be adequate in terms of predicting mean population fitness and viability.  相似文献   

9.
Quantitative genetics models have been used to predict the constraints on local adaptation caused by gene flow between populations under migration–selection balance. One key assumption of this approach is that genetic values within a population are normally distributed. Gene flow, however, may generate distributions that are skewed toward the immigrant's mean value. If the response to selection from a skewed distribution is different from that expected under the assumption of normality, models may result in inaccurate predictions. We use individual-based computer simulations to explore this problem, comparing our results to a recent model developed by Hendry et al. (2001) . We show that this model underestimates the equilibrium divergence between populations at migration–selection balance. The extent of this underestimation is correlated with the amount of genetic skew generated by migration and is partly explained by the fact that the analytical model ignores direct selection against hybrid phenotypes. We also show that all else being equal, response to selection in a population with a skewed distribution of genotypes is greater than in a population with normally distributed genotypes. The production of skew under migration–selection balance, however, is itself dependent upon the genetic architecture, with greater deviations from normality produced when alleles contributing to population differentiation have very different effect sizes. We find that both the skew and discrepancies between the models are greatest at intermediate migration rates and moderate to strong selection, which is exactly the region of parameter space that is most empirically relevant.  相似文献   

10.
Despite the directional selection acting on life‐history traits, substantial amounts of standing variation for these traits have frequently been found. This variation may result from balancing selection (e.g., through genetic trade‐offs) or from mutation‐selection balance. These mechanisms affect allele frequencies in different ways: Under balancing selection alleles are maintained at intermediate frequencies, whereas under mutation‐selection balance variation is generated by deleterious mutations and removed by directional selection, which leads to asymmetry in the distribution of allele frequencies. To investigate the importance of these two mechanisms in maintaining heritable variation in oviposition rate of the two‐spotted spider mite, we analyzed the response to artificial selection. In three replicate experiments, we selected for higher and lower oviposition rate, compared to control lines. A response to selection only occurred in the downward direction. Selection for lower oviposition rate did not lead to an increase in any other component of fitness, but led to a decline in female juvenile survival. The results suggest standing variation for oviposition rate in this population consists largely of deleterious alleles, as in a mutation‐selection balance. Consequently, the standing variation for this trait does not appear to be indicative of its adaptive potential.  相似文献   

11.
Abstract.— A biallelic viability model based on human data for maternal-fetal interactions reported by Hedrick (1997) gives the interesting result of neutral stability at all gene frequencies. I show that there are two levels of selection, within and among families, acting in opposing directions in this model and that the neutral stability occurs when the two levels of selection exactly balance one another, as they do in a randomly mating population. Deviations from random mating disrupt the balance and consequently destroy the neutral stability. However, with inbreeding avoidance, which characterizes the human histocompatibility loci, within-family selection is strengthened and among-family selection is weakened. This favors the invasion of new alleles and contributes to a high equilibrium level of genetic diversity at loci with maternal-fetal interactions affecting offspring viability in the pattern described by Hedrick. This pattern of selection is remarkably similar to that observed for the maternal effect selfish genes, Medea in flour beetles and scat in the mouse, and the Gp -9 gene in the fire ant.  相似文献   

12.
The present series of papers attempts to accommodate interaction among individuals in evolutionary theory. The interaction phenomenon is genetically characterized by two dimensions (direct and associate) of gene activity. For optimal selection results, a balance between the two dimensions must occur. In the first paper of the series, it was shown that random interactions resulted in an unbalanced selection response in that the direct, but not associate, effects were included in the expression for gene frequency change. The next three papers of the series (II, III and IV) were designed to determine whether or not selection with life-history models that involved non-random interactions would be useful in ameliorating the problem of selection balance.In the present study, two kinds of non-random gene association are analyzed jointly by restricting interactions to related individuals that are derived from inbred base populations. The analyses are generalized to accommodate heterogeneous as well as homogeneous groups of interacting individuals. The joint contributions of inbreeding and consanguinity to selection response are analysed by use of the nine gene-identity parameters devised by Harris.It is demonstrated that consanguinity alone or in conjunction with inbreeding does improve selection balance. However, inbreeding alone does not. Also, the influence of inbreeding is not dependent on group size, whereas the influence of consanguinity is conditioned by the size of the group. Thus, by introducing associate effects into the selection process, the use of related groups can provide the genetical bases for the evolution of social behavior phenomena such as altruism.  相似文献   

13.
Almost all protein-coding genes are spliced and their majority is alternatively spliced. Alternative splicing is a key element in eukaryotic gene expression that increases the coding capacity of the human genome and an increasing number of examples illustrates that the selection of wrong splice sites causes human disease. A fine-tuned balance of factors regulates splice site selection. Here, we discuss well-studied examples that show how a disturbance of this balance can cause human disease. The rapidly emerging knowledge of splicing regulation now allows the development of treatment options.  相似文献   

14.
The history of the study of snails in the genus Cepaea is briefly outlined. Cepaea nemoralis and C. hortensis are polymorphic for genetically controlled shell colour and banding, which has been the main interest of the work covered. Random drift, selective predation and climatic selection, both at a macro- and micro-scale, all affect gene frequency. The usual approach to understanding maintenance of the polymorphism, has been to look for centripetal effects on frequency. Possible processes include balance of mutation pressure and drift, heterozygote advantage, relational balance heterosis, frequency-dependent predation, multi-niche selective balance, or some combination of these. Mutational balance is overlaid by more substantial forces. There is some evidence for heterosis. Predation by birds may protect the polymorphism, and act apostatically to favour distinct morphs. Although not substantiated for Cepaea, many studies show that predators behave in the appropriate manner, while shell colour polymorphisms in molluscs occur most commonly in species exposed to visually searching predators. It is not known whether different thermal properties of the shells help to generate equilibria. Migration between colonies is probably greater than originally thought. The present geographical range has been occupied for less than 5000 generations. Climatic and human modification alter snail habitats relatively rapidly, which in turn changes selection pressures. A simple simulation shows that migration coupled with selection which fluctuates but is not centripetal, may retain polymorphism for sufficiently long to account for the patterns we see today. There may therefore be a two-stage basis to the polymorphism, comprising long-term but weak balancing forces coupled with fluctuating selection which does not necessarily balance but results in very slow elimination. Persistence of genetic variants in this way may provide the conditions for evolution of a balanced genome.  相似文献   

15.
Impact of the human egalitarian syndrome on darwinian selection mechanics   总被引:1,自引:0,他引:1  
Boehm C 《The American naturalist》1997,150(Z1):S100-S121
With nothing more than kin selection and reciprocal altruism theories to work with, the selection basis of human degrees of altruism and cooperation is often difficult to explain. However, during our prehistoric foraging phase, a highly stable egalitarian syndrome arose that had profound effects on Darwinian selection mechanics. The band's insistence on egalitarianism seriously damped male status rivalry and thereby reduced the intensity of selection within the group by reducing phenotypic variation at that level, while powerful social pressure to make decisions consensual at the band level had a similar effect. Consensual decisions also had another effect: they increased variation between groups because entire bands enacted their subsistence strategies collectively and the strategies varied between bands. By reducing the intensity of individual selection and boosting group effects, these behaviors provided a unique opportunity for altruistic genes to be established and maintained. In addition, the egalitarian custom of socially isolating or actively punishing lazy or cheating noncooperators reduced the free-rider problem. In combination, these phenotypic effects facilitated selection of altruistic genes in spite of some limited free riding. This selection scenario remained in place for thousands of generations, and the result was a shift in the balance of power between individual and group selection in favor of group effects. This new balance today is reflected in an ambivalent human nature that exhibits substantial altruism in addition to selfishness and nepotism.  相似文献   

16.
 Two results are presented for problems involving alleles with a continuous range of effects. The first result is a simple yet highly accurate numerical method that determines the equilibrium distribution of allelic effects, moments of this distribution, and the mutational load. The numerical method is explicitly applied to the mutation-selection balance problem of stabilising selection. The second result is an exact solution for the distribution of allelic effects under weak stabilising selection for a particular distribution of mutant effects. The exact solution is shown to yield a distribution of allelic effects that, depending on the mutation rate, interpolates between the ``House of Cards' approximation and the Gaussian approximation. The exact solution is also used to test the accuracy of the numerical method. Received: 7 November 2001 / Revised version: 5 September 2002 / Published online: 18 December 2002 Key words or phrases: Continuum of alleles – Numerical solution – Exact solution – Mutation selection balance – Stabilising selection  相似文献   

17.
S. Gavrilets  G. de-Jong 《Genetics》1993,134(2):609-625
We show that in polymorphic populations many polygenic traits pleiotropically related to fitness are expected to be under apparent ``stabilizing selection' independently of the real selection acting on the population. This occurs, for example, if the genetic system is at a stable polymorphic equilibrium determined by selection and the nonadditive contributions of the loci to the trait value either are absent, or are random and independent of those to fitness. Stabilizing selection is also observed if the polygenic system is at an equilibrium determined by a balance between selection and mutation (or migration) when both additive and nonadditive contributions of the loci to the trait value are random and independent of those to fitness. We also compare different viability models that can maintain genetic variability at many loci with respect to their ability to account for the strong stabilizing selection on an additive trait. Let V(m) be the genetic variance supplied by mutation (or migration) each generation, V(g) be the genotypic variance maintained in the population, and n be the number of the loci influencing fitness. We demonstrate that in mutation (migration)-selection balance models the strength of apparent stabilizing selection is order V(m)/V(g). In the overdominant model and in the symmetric viability model the strength of apparent stabilizing selection is approximately 1/(2n) that of total selection on the whole phenotype. We show that a selection system that involves pairwise additive by additive epistasis in maintaining variability can lead to a lower genetic load and genetic variance in fitness (approximately 1/(2n) times) than an equivalent selection system that involves overdominance. We show that, in the epistatic model, the apparent stabilizing selection on an additive trait can be as strong as the total selection on the whole phenotype.  相似文献   

18.
In many models of evolving populations, genetic drift has an outsized role relative to natural selection, or vice versa. While there are many scenarios in which one of these two assumptions is reasonable, intermediate balances between these forces are also biologically relevant. In this study, we consider some natural axioms for modeling intermediate selection intensities, and we explore how to quantify the long-term evolutionary dynamics of such a process. To illustrate the sensitivity of evolutionary dynamics to drift and selection, we show that there can be a “sweet spot” for the balance of these two forces, with sufficient noise for rare mutants to become established and sufficient selection to spread. This balance allows prosocial traits to evolve in evolutionary models that were previously thought to be unconducive to the emergence and spread of altruistic behaviors. Furthermore, the effects of selection intensity on long-run evolutionary outcomes in these settings, such as when there is global competition for reproduction, can be highly non-monotonic. Although intermediate selection intensities (neither weak nor strong) are notoriously difficult to study analytically, they are often biologically relevant; and the results we report suggest that they can elicit novel and rich dynamics in the evolution of prosocial behaviors.  相似文献   

19.
In the first paper of the current series, (I), a complex interaction model capable of describing any kind of interaction among individuals was developed. However, selection operating on random groups with regard to this model yielded short- and long-term results which were unbalanced. In subsequent kin-selection papers (II, III, and IV), a systematic analysis demonstrated that use of non-random groups could partially solve the balance problem.The present study is the first of several to employ a different approach to the problem of accommodating interaction. This approach involves changing the life-history model itself in such a way that the fitness components of individuals within groups are synchronized. Synchronization of fitness components produces total fitness values which are symmetrical. In the present study, selection operating on random groups for a model having symmetrical fitness values is evaluated for both balance and efficiency. It is demonstrated that the selection response is balanced and yields short- and long-term optimum results, but under a variety of conditions the efficiency can be low.  相似文献   

20.
The present series of studies attempts to accommodate interaction among individuals in evolutionary theory. The interaction phenomenon is characterized by two dimensions (direct and associate) of gene activity. For optimal selection results, a balance between the two dimensions must occur. In the first paper of the series, it was shown that random interactions resulted in an unbalanced selection response. The expression for gene frequency change involved direct, but not associate, effects. The next three papers of the series (II, III and IV) are designed to explore the possibility that restricting interactions to certain non-random patterns may ameliorate the problem of selection balance.In the present study the interactions are restricted to related individuals in a population that is in Hardy-Weinberg equilibrium. A preliminary analysis in which interactions are restricted to full-sibs is made. This analysis is extended to the more general case in which interactions occur among related individuals of any class whose coefficient of relationship is measured by ‘r’. The classical pairwise interaction results of Hamilton are verified and extended to include interactions among individuals in groups of arbitrary size, n.Restricting interactions to related individuals tends to improve the condition of selection balance. It does this by introducing associate effects into the expression for gene frequency change. The extent to which this is accomplished is a function of the coefficient of relationship (r), and the number of interacting genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号