共查询到20条相似文献,搜索用时 15 毫秒
1.
Tethyan microencrusters and microbial crusts, most of them previously unknown in Japanese Mesozoic biotas, are present in the uppermost Jurassic–lowermost Cretaceous Torinosu Limestone distributed in southwestern Japan. They construct reefal facies together with reef-forming metazoans. Bacinella irregularis and Lithocodium aggregatum are quantitatively most important, while subordinate constituents include Thaumatoporella parvovesiculifera, Koskinobullina socialis , Iberopora bodeuri , Girvanella sp. and Tubiphytes morronensis. They are especially common in the shallow-water reefal facies, but appear micritic in outcrops. Microencrusters and microbial crusts can only be recognized in thin sections, and they grow around the reef building metazoans and form bindstone. Each microencruster exhibits some specific spatial distribution associated with its paleoecology. Similarities with the taxonomic composition of the upper Jurassic Tethyan microencruster association imply that the community extended geographically at least to the Tethyan gateway where the Japanese Island Arc was located. 相似文献
2.
DYNAMICS OF DINOSAURS AND OTHER EXTINCT GIANTS by R. McNeill Alexander. 1989. Columbia University Press, New York, 167 pp. DER EOZÄNE MESSELSEE (EOCENE LAKE MESSEL), edited by Jens Lorenz Franzen and Walter Michaelis. Courier Forschungsinstitut Senckenberg, 107, 452 p., Frankfurt am Main 1988. ISBN 3–924500–44–4. 相似文献
3.
BENJAMIN P. KEAR 《Palaeontology》2012,55(5):1125-1138
Abstract: Jurassic plesiosaur fossils are exceptionally rare in Australia and currently restricted to a single fragmentary skeleton (Sinemurian, Razorback beds, Queensland), some articulated vertebrae (lower Toarcian, Evergreen Formation, Queensland) and a few isolated bones and teeth (Aalenian–Bajocian, Champion Bay Group, Western Australia). These remains are attributable to either indeterminate plesiosaurs, or more specifically to pliosauroids and plesiosauroids, and occur within a variety of fluviatile‐lacustrine to coastal marine depositional settings. Although hampered by their incompleteness, Australia’s Jurassic plesiosaurs are significant because they include some of the most ancient occurrences from nonmarine strata, and Gondwanan marine reptiles of a similar age are otherwise very sparsely known. 相似文献
4.
John J. Wiens Carl R. Hutter Daniel G. Mulcahy Brice P. Noonan Ted M. Townsend Jack W. Sites Jr Tod W. Reeder 《Biology letters》2012,8(6):1043-1046
Squamate reptiles (lizards and snakes) are one of the most diverse groups of terrestrial vertebrates. Recent molecular analyses have suggested a very different squamate phylogeny relative to morphological hypotheses, but many aspects remain uncertain from molecular data. Here, we analyse higher-level squamate phylogeny with a molecular dataset of unprecedented size, including 161 squamate species for up to 44 nuclear genes each (33 717 base pairs), using both concatenated and species-tree methods for the first time. Our results strongly resolve most squamate relationships and reveal some surprising results. In contrast to most other recent studies, we find that dibamids and gekkotans are together the sister group to all other squamates. Remarkably, we find that the distinctive scolecophidians (blind snakes) are paraphyletic with respect to other snakes, suggesting that snakes were primitively burrowers and subsequently re-invaded surface habitats. Finally, we find that some clades remain poorly supported, despite our extensive data. Our analyses show that weakly supported clades are associated with relatively short branches for which individual genes often show conflicting relationships. These latter results have important implications for all studies that attempt to resolve phylogenies with large-scale phylogenomic datasets. 相似文献
5.
6.
Exceptionally well‐preserved Late Triassic unionoids from Silesia, Poland, show prominently ornamented juvenile shells and umbonal muscle attachments that are similar to Margaritifera, which are anatomically the least derived among extant unionoids. Their phosphatized (originally chitinous and impregnated with calcium phosphate) gill supports lacked transverse connections, and occasionally some of them were separated from others, being thus at the filibranch grade, like their trigonioid ancestors. Several separate small foot elevator attachments in these unionoids indicate Trigonodidae adaptation to marine or brackish water, in which the original trigonioid strong single attachment was already split into two in the Early Triassic. The ribbing of juvenile shells suggests a change to deeper infaunal life for juvenile stages, and generally less efficient near‐surface locomotion, with a wedge‐like foot, in adults. Much later the unionoids became eulamellibranchial, which promoted the brooding of the fish that their larvae parasitize. To accomodate the classification of the order under this scenario of evolutionary changes, a new suborder Silesunionina is proposed for its filibranch members. It includes the Silesunionidae fam. nov. , with the location of umbonal muscles similar to that in the extant underived unionoids, and the Unionellidae fam. nov. , with umbonal muscles attached to the external wall of the umbonal cavity. The early Late Triassic (Carnian) Silesunio parvus gen. et sp. nov. and latest Triassic (Rhaetian) Tihkia(?) silesiaca sp. nov. are proposed. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 863–883. 相似文献
7.
Mark N. Puttick Thomas Guillerme Matthew A. Wills 《Evolution; international journal of organic evolution》2020,74(10):2207-2220
Studies of biodiversity through deep time have been a staple for biologists and paleontologists for over 60 years. Investigations of species richness (diversity) revealed that at least five mass extinctions punctuated the last half billion years, each seeing the rapid demise of a large proportion of contemporary taxa. In contrast to diversity, the response of morphological diversity (disparity) to mass extinctions is unclear. Generally, diversity and disparity are decoupled, such that diversity may decline as morphological disparity increases, and vice versa. Here, we develop simulations to model disparity changes across mass extinctions using continuous traits and birth-death trees. We find no simple null for disparity change following a mass extinction but do observe general patterns. The range of trait values decreases following either random or trait-selective mass extinctions, whereas variance and the density of morphospace occupation only decline following trait-selective events. General trends may differentiate random and trait-selective mass extinctions, but methods struggle to identify trait selectivity. Long-term effects of mass extinction trait selectivity change support for phylogenetic comparative methods away from the simulated Brownian motion toward Ornstein-Uhlenbeck and Early Burst models. We find that morphological change over mass extinction is best studied by quantifying multiple aspects of morphospace occupation. 相似文献
8.
Kevin D. Kohl Antonio Brun Melisa Magallanes Joshua Brinkerhoff Alejandro Laspiur Juan Carlos Acosta Enrique Caviedes‐Vidal Seth R. Bordenstein 《Molecular ecology》2017,26(4):1175-1189
Animals maintain complex associations with a diverse microbiota living in their guts. Our understanding of the ecology of these associations is extremely limited in reptiles. Here, we report an in‐depth study into the microbial ecology of gut communities in three syntopic and viviparous lizard species (two omnivores: Liolaemus parvus and Liolaemus ruibali and an herbivore: Phymaturus williamsi). Using 16S rRNA gene sequencing to inventory various bacterial communities, we elucidate four major findings: (i) closely related lizard species harbour distinct gut bacterial microbiota that remain distinguishable in captivity; a considerable portion of gut bacterial diversity (39.1%) in nature overlap with that found on plant material, (ii) captivity changes bacterial community composition, although host‐specific communities are retained, (iii) faecal samples are largely representative of the hindgut bacterial community and thus represent acceptable sources for nondestructive sampling, and (iv) lizards born in captivity and separated from their mothers within 24 h shared 34.3% of their gut bacterial diversity with their mothers, suggestive of maternal or environmental transmission. Each of these findings represents the first time such a topic has been investigated in lizard hosts. Taken together, our findings provide a foundation for comparative analyses of the faecal and gastrointestinal microbiota of reptile hosts. 相似文献
9.
Alex Slavenko Yuval Itescu Pasquale Raia Shai Meiri 《Global Ecology and Biogeography》2016,25(11):1308-1320
Aim A major Late Quaternary vertebrate extinction event affected mostly large‐bodied ‘megafauna’. This is well documented in both mammals and birds, but evidence of a similar trend in reptiles is scant. We assess the relationship between body size and Late Quaternary extinction in reptiles at the global level. Location Global. Methods We compile a body size database for all 82 reptile species that are known to have gone extinct during the last 50,000 years and compare them with the sizes of 10,090 extant reptile species (97% of known extant diversity). We assess the body size distributions in the major reptile groups: crocodiles, lizards, snakes and turtles, while testing and correcting for a size bias in the fossil record. We examine geographical biases in extinction by contrasting mainland and insular reptile assemblages, and testing for biases within regions and then globally by using geographically weighted models. Results Extinct reptiles were larger than extant ones, but there was considerable variation in extinction size biases among groups. Extinct lizards and turtles were large, extinct crocodiles were small and there was no trend in snakes. Lizard lineages vary in the way their extinction is related to size. Extinctions were particularly prevalent on islands, with 73 of the 82 extinct species being island endemics. Four others occurred in Australia. The fossil record is biased towards large‐bodied reptiles, but extinct lizards were larger than extant ones even after we account for this. Main conclusions Body size played a complex role in the extinction of Late Quaternary reptiles. Larger lizard and turtle species were clearly more affected by extinction mechanisms such as over exploitation and invasive species, resulting in a prevalence of large‐bodied species among extinct taxa. Insularity was by far the strongest correlate of recent reptile extinctions, suggesting that size‐biased extinction mechanisms are amplified in insular environments. 相似文献
10.
Martha M. Muñoz Nicholas G. Crawford Thomas J. McGreevy Jr Nicholas J. Messana Rebecca D. Tarvin Liam J. Revell Rosanne M. Zandvliet Juanita M. Hopwood Elbert Mock André L. Schneider Christopher J. Schneider 《Molecular ecology》2013,22(10):2668-2682
Adaptive divergence in coloration is expected to produce reproductive isolation in species that use colourful signals in mate choice and species recognition. Indeed, many adaptive radiations are characterized by differentiation in colourful signals, suggesting that divergent selection acting on coloration may be an important component of speciation. Populations in the Anolis marmoratus species complex from the Caribbean island of Guadeloupe display striking divergence in the colour and pattern of adult males that occurs over small geographic distances, suggesting strong divergent selection. Here we test the hypothesis that divergence in coloration results in reduced gene flow among populations. We quantify variation in adult male coloration across a habitat gradient between mesic and xeric habitats, use a multilocus coalescent approach to infer historical demographic parameters of divergence, and examine gene flow and population structure using microsatellite variation. We find that colour variation evolved without geographic isolation and in the face of gene flow, consistent with strong divergent selection and that both ecological and sexual selection are implicated. However, we find no significant differentiation at microsatellite loci across populations, suggesting little reproductive isolation and high levels of contemporary gene exchange. Strong divergent selection on loci affecting coloration probably maintains clinal phenotypic variation despite high gene flow at neutral loci, supporting the notion of a porous genome in which adaptive portions of the genome remain fixed whereas neutral portions are homogenized by gene flow and recombination. We discuss the impact of these findings for studies of colour evolution and ecological speciation. 相似文献
11.
BENJAMIN P. KEAR 《Palaeontology》2006,49(4):837-856
Abstract: The Lower Cretaceous rocks of South Australia have yielded a diverse marine reptile assemblage of up to five families of plesiosaur (including a new cryptoclidid or cimoliasaurid, indeterminate elasmosaurids, a possible polycotylid, rhomaleosaurids, and pliosaurid) and one family of ichthyosaur (ophthalmosaurid). Other common associated vertebrates include chimaerids and osteichthyans. Sharks, dipnoans and dinosaurs are uncommon and marine turtles are notably absent. The main fossil‐producing strata belong to the Lower Aptian–Lower Albian Bulldog Shale although the Upper Albian Oodnadatta Formation has produced isolated elements. Both these units comprise finely laminated shaly mudstones and claystones deposited in a transgressive shallow coastal, epicontinental marine environment. Estimates of palaeolatitude place South Australia between 60° and 70°S, in the late Early Cretaceous. Sedimentary structures (including lonestone boulders and glendonites), fossils, isotope data and climatic modelling also indicate that seasonally cool–cold conditions (possibly with winter freezing) prevailed during deposition of the Bulldog Shale. This contrasts markedly with climate regimes typically tolerated by modern aquatic reptiles but suggests that some of the South Australian Mesozoic taxa may have possessed adaptations (including elevated metabolic levels and/or annual migration) to cope with low temperatures. A high proportion of juvenile plesiosaur remains in the Bulldog Shale might also indicate that nutrient‐rich cold‐water coastal habitats functioned as both ‘safe calving grounds’ and refuges for young animals prior to their entering the open sea as adults. The occurrence of plesiosaurs and ichthyosaurs in the high‐latitude Lower Cretaceous of southern Australia, along with plesiosaurs and mosasaurs in the Upper Cretaceous of South America, Antarctica, New Zealand and the Chatham Islands, demonstrates that Mesozoic marine reptiles utilized southern high‐latitude environments over a considerable period of time, and that these records do not represent casual occupation by isolated taxa. 相似文献
12.
Paul M. Barrett Matthew T. Carrano David C. Evans Graeme T. Lloyd Philip D. Mannion Mark A. Norell Daniel J. Peppe Paul Upchurch Thomas E. Williamson 《Biological reviews of the Cambridge Philosophical Society》2015,90(2):628-642
Non‐avian dinosaurs went extinct 66 million years ago, geologically coincident with the impact of a large bolide (comet or asteroid) during an interval of massive volcanic eruptions and changes in temperature and sea level. There has long been fervent debate about how these events affected dinosaurs. We review a wealth of new data accumulated over the past two decades, provide updated and novel analyses of long‐term dinosaur diversity trends during the latest Cretaceous, and discuss an emerging consensus on the extinction's tempo and causes. Little support exists for a global, long‐term decline across non‐avian dinosaur diversity prior to their extinction at the end of the Cretaceous. However, restructuring of latest Cretaceous dinosaur faunas in North America led to reduced diversity of large‐bodied herbivores, perhaps making communities more susceptible to cascading extinctions. The abruptness of the dinosaur extinction suggests a key role for the bolide impact, although the coarseness of the fossil record makes testing the effects of Deccan volcanism difficult. 相似文献
13.
S. A. Kosushkin O. R. Borodulina E. N. Solovyeva V. V. Grechko 《Molecular Biology》2008,42(6):870-881
Sequences of the SINE family specific to squamate reptiles have been isolated from the genomes of lacertid lizards and sequenced. These retroposons, which we called Squam1, are 360–390 bp long and contain a region similar to the tRNA gene sequence at the 5’ end. This family has also been detected in representatives of other reptile families (varanids, iguanids (Anolis), gekkonids, and snakes), being absent from the genomes of crocodiles as well as amphibians, birds, and mammals. The primary structures of Squam1 copies have been comprehensively analyzed and compared with GenBank sequences. The genomes of most taxa contain two to three SINE subfamilies with specific diagnostic features in their primary structures. Individual similarity between the copies within each taxon is about 85%, with intrageneric similarity being only slightly higher. A comparison of consensus sequences between different lizard families has shown that Squam1 may be a convenient phylogenetic marker for this group of reptiles, having a number of both apomorphic and more or less pronounced synapomorphic features. By this criterion, snakes slightly differ from lizards but obviously belong to the same clade. However, they show no special affinity to varanids as the putative closest relatives of snakes, compared to other lizards. 相似文献
14.
Nikolai N. Nosov Valery N. Tikhomirov Eduard M. Machs Alexander V. Rodionov 《Nordic Journal of Botany》2019,37(3)
In this study, sequence data from the inert nuclear region ITS1‐5.8S rDNA‐ITS2 and the chloroplast region trnL–F, as well as a few morphological characters, are analysed to the relationships among known annual Poa (bluegrasses). It is shown that all taxa from the Poa annua aggregate distinguished by lemma characters and growth form have identical ITS and trnL–trnF sequences, all ITS sequences of this aggregate are the same as thethose of P. supina, and all trnL–trnF sequences are homologous with those of P. infirma. Furthermore, no differences were found between unusual morphotypes of P. supina with short spinules on their panicle branches and typical plants, but Siberian samples were found to have a slightly differentiated trnL–trnF region. These results suggest a hybrid origin of the Asian annual bluegrasses. Their maternal genome is close to that of P. sect. Homalopoa, but their ITS sequences are different. Some ITS sequences from annual Asian bluegrasses are resolved among representatives of P. sect. Stenopoa while for other (morphologically closely similar) species they fall in a clade with representatives of P. sect. Malacanthae. The latter group is distant from P. sect. Ochlopoa and is better treated as a separate section, viz P. sect. Acroleucae. The American annual bluegrasses are heterogeneous and also rather distant from P. sect. Ochlopoa. Poa chapmaniana, a species with cleistogamic flowers, is nested among the basal Subantarctic sections, far away from the taxa with which it has previously been considered related. It is indeed closer to P. sect. Ochlopoa than to other annual American bluegrasses. Thus, the studied annual species in fact belong to four independent evolutionary lines (or six including the separate genus Eremopoa and the Turkish Poa jubata), one of which, Acroleucae, has gone through three reticulation events. As in previous studies, our analysis did not support the generic status of P. sect. Ochlopoa. 相似文献
15.
16.
Hidetoshi Ota 《Population Ecology》1998,40(2):189-204
This paper analyzes the phylogeographical patterns of amphibian and reptile lineages distributed in the Ryukyu islands south of the Tokara Gap on the basis of relevant distributional data and phylogenetic hypotheses hitherto published. Results indicate the numerical dominance of highly relict lineages in the central Ryukyus, and the occurences of a few more or less relict lineages in the Miyako Group as well. On the other hand, most species and subspecies endemic to the Yaeyama Group or to the Yaeyama and Miyako Groups are considered to be direct consequences of vicariance with adjacent regions. Three major hypotheses regarding the Cenozoic paleogeography of the central and the southern Ryukyus are examined in the light of the present results and a modified hypothesis is proposed accordingly. 相似文献
17.
Melissa Bars‐Closel Tiana Kohlsdorf Daniel S. Moen John J. Wiens 《Evolution; international journal of organic evolution》2017,71(9):2243-2261
Patterns of species richness among clades can be directly explained by the ages of clades or their rates of diversification. The factors that most strongly influence diversification rates remain highly uncertain, since most studies typically consider only a single predictor variable. Here, we explore the relative impacts of macroclimate (i.e., occurring in tropical vs. temperate regions) and microhabitat use (i.e., terrestrial, fossorial, arboreal, aquatic) on diversification rates of squamate reptile clades (lizards and snakes). We obtained data on microhabitat, macroclimatic distribution, and phylogeny for >4000 species. We estimated diversification rates of squamate clades (mostly families) from a time‐calibrated tree, and used phylogenetic methods to test relationships between diversification rates and microhabitat and macroclimate. Across 72 squamate clades, the best‐fitting model included microhabitat but not climatic distribution. Microhabitat explained ~37% of the variation in diversification rates among clades, with a generally positive impact of arboreal microhabitat use on diversification, and negative impacts of fossorial and aquatic microhabitat use. Overall, our results show that the impacts of microhabitat on diversification rates can be more important than those of climate, despite much greater emphasis on climate in previous studies. 相似文献
18.
As the field of phylogeography has matured, it has become clear that analyses of one or a few genes may reveal more about the history of those genes than the populations and species that are the targets of study. To alleviate these concerns, the discipline has moved towards larger analyses of more individuals and more genes, although little attention has been paid to the qualitative or quantitative gains that such increases in scale and scope may yield. Here, we increase the number of individuals and markers by an order of magnitude over previously published work to comprehensively assess the phylogeographical history of a well‐studied declining species, the western pond turtle (Emys marmorata). We present a new analysis of 89 independent nuclear SNP markers and one mitochondrial gene sequence scored for rangewide sampling of >900 individuals, and compare these to smaller‐scale, rangewide genetic and morphological analyses. Our enlarged SNP data fundamentally revise our understanding of evolutionary history for this lineage. Our results indicate that the gains from greatly increasing both the number of markers and individuals are substantial and worth the effort, particularly for species of high conservation concern such as the pond turtle, where accurate assessments of population history are a prerequisite for effective management. 相似文献
19.
Jack W. Sites Jr 《Molecular ecology》2013,22(14):3653-3655
In this issue of Molecular Ecology, Neuwald & Templeton (2013) report on a 22‐year study of natural populations of Collared Lizards (Crotaphytus collaris) that evolved on isolated on rock outcrops (‘glades’) in the Ozark Mountains in eastern Missouri. This ecosystem was originally maintained by frequent fires that kept the forest understory open, but fire‐suppression was adopted as official policy in about 1945, which led to a loss of native biodiversity, including local extinctions of some lizard populations. Policies aimed at restoring biodiversity included controlled burns and re‐introductions of lizards to some glades, which began in 1984. Populations were monitored from 1984–2006, and demographic and genetic data collected from 1 679 lizards were used to documents shifts in meta‐population dynamics over four distinct phases of lizard recovery: 1–an initial translocation of lizards drawn from the same source populations onto three glades that were likely part of one meta‐population; 2–a period of isolation and genetic drift associated with the absence of fires; 3–a period of rapid colonization and population increase following restoration of fire; and 4–stabilization of the meta‐population under regular prescribed burning. This study system thus provides a rare opportunity to characterize the dynamics of a landscape‐scale management strategy on the restoration of the meta‐population of a reintroduced species; long‐term case studies of the extinction, founding, increase, and stabilization of a well‐defined meta‐population, based on both demographic and population genetic data, are rare in the conservation, ecological, and evolutionary literature. 相似文献
20.
Karin Tamar Thomas Wilms Andreas Schmitz Pierre‐André Crochet Philippe Geniez Salvador Carranza 《Zoologica scripta》2018,47(2):159-173
The subfamily Uromastycinae within the Agamidae is comprised of 18 species: three within the genus Saara and 15 within Uromastyx. Uromastyx is distributed in the desert areas of North Africa and across the Arabian Peninsula towards Iran. The systematics of this genus has been previously revised, although incomplete taxonomic sampling or weakly supported topologies resulted in inconclusive relationships. Biogeographic assessments of Uromastycinae mostly agree on the direction of dispersal from Asia to Africa, although the timeframe of the cladogenesis events has never been fully explored. In this study, we analysed 129 Uromastyx specimens from across the entire distribution range of the genus. We included all but one of the recognized taxa of the genus and sequenced them for three mitochondrial and three nuclear markers. This enabled us to obtain a comprehensive multilocus time‐calibrated phylogeny of the genus, using the concatenated data and species trees. We also applied coalescent‐based species delimitation methods, phylogenetic network analyses and model‐testing approaches to biogeographic inferences. Our results revealed Uromastyx as a monophyletic genus comprised of five groups and 14 independently evolving lineages, corresponding to the 14 currently recognized species sampled. The onset of Uromastyx diversification is estimated to have occurred in south‐west Asia during the Middle Miocene with a later radiation in North Africa. During its Saharo‐Arabian colonization, Uromastyx underwent multiple vicariance and dispersal events, hypothesized to be derived from tectonic movements and habitat fragmentation due to the active continental separation of Arabia from Africa and the expansion and contraction of arid areas in the region. 相似文献