首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The long‐term establishment success of founder plant populations has been commonly assessed based on the measures of population genetic diversity and among population genetic differentiation, with founder populations expected to carry sufficient genetic diversity when population establishment is the result of many colonists from multiple source populations (the ‘migrant pool’ colonization model). Theory, however, predicts that, after initial colonization, rapid population expansion may result in a fast increase in the extent of spatial genetic structure (SGS), independent of extant genetic diversity. This SGS can reduce long‐term population viability by increasing inbreeding. Using 12 microsatellite markers, we inferred colonization patterns in four recent populations of the grassland specialist plant Anthyllis vulneraria and compared the extent of SGS between recently established and old populations. Assignment analyses of the individuals of recent population based on the genetic composition of nine adjacent putative source populations suggested the occurrence of the ‘migrant pool’ colonization model, further confirmed by high genetic diversity within and low genetic differentiation among recent populations. Population establishment, however, resulted in the build‐up of strong SGS, most likely as a result of spatially restricted recruitment of the progeny of initial colonists. Although reduced, significant SGS was nonetheless observed to persist in old populations. The presence of SGS was in all populations associated with elevated inbreeding coefficients, potentially affecting the long‐term viability of these populations. In conclusion, this study illustrates the importance of studying SGS next to population genetic diversity and differentiation to adequately infer colonization patterns and long‐term establishment success of plant species.  相似文献   

3.
4.
Understanding reproductive patterns in endangered species is critical for supporting their recovery efforts. In this study we use a combination of paired‐parent and single‐parent assignments to examine the reproductive patterns in an endangered population of sockeye salmon (Oncorhynchus nerka) that uses Redfish Lake in central Idaho as a spawning and nursery lake. Recovery efforts include the release of maturing adults into the lake for volitional spawning. The lake is also inhabited by a population of resident O. nerka that is genetically indistinguishable, but phenotypically smaller, to the maturing adults released into the lake. The resident population is difficult to sample and the reproductive patterns between the two groups are unknown. We used results of paired‐ and single‐parentage assignments to specifically examine the reproductive patterns of male fish released into the lake under an equal sex ratio and a male‐biased sex ratio. Assignment results of offspring leaving the lake indicated a reproductive shift by males under the two scenarios. Males displayed an assortative mating pattern under an equal sex ratio and spawned almost exclusively with the released females. Under a male‐biased sex ratio most males shifted to a negative‐assortative mating pattern and spawned with smaller females from the resident population. These males were younger and smaller than males that spawned with released females suggesting they were unable to compete with larger males for spawning opportunities with the larger, released females. The results provided insights into the reproductive behavior of this endangered population and has implications for recovery efforts.  相似文献   

5.
6.
7.
Recognition of the importance of cross‐validation (‘any technique or instance of assessing how the results of a statistical analysis will generalize to an independent dataset’; Wiktionary, en.wiktionary.org) is one reason that the U.S. Securities and Exchange Commission requires all investment products to carry some variation of the disclaimer, ‘Past performance is no guarantee of future results.’ Even a cursory examination of financial behaviour, however, demonstrates that this warning is regularly ignored, even by those who understand what an independent dataset is. In the natural sciences, an analogue to predicting future returns for an investment strategy is predicting power of a particular algorithm to perform with new data. Once again, the key to developing an unbiased assessment of future performance is through testing with independent data—that is, data that were in no way involved in developing the method in the first place. A ‘gold‐standard’ approach to cross‐validation is to divide the data into two parts, one used to develop the algorithm, the other used to test its performance. Because this approach substantially reduces the sample size that can be used in constructing the algorithm, researchers often try other variations of cross‐validation to accomplish the same ends. As illustrated by Anderson in this issue of Molecular Ecology Resources, however, not all attempts at cross‐validation produce the desired result. Anderson used simulated data to evaluate performance of several software programs designed to identify subsets of loci that can be effective for assigning individuals to population of origin based on multilocus genetic data. Such programs are likely to become increasingly popular as researchers seek ways to streamline routine analyses by focusing on small sets of loci that contain most of the desired signal. Anderson found that although some of the programs made an attempt at cross‐validation, all failed to meet the ‘gold standard’ of using truly independent data and therefore produced overly optimistic assessments of power of the selected set of loci—a phenomenon known as ‘high grading bias.’  相似文献   

8.
9.
10.
11.
Microsatellite DNA and mitochondrial DNA control‐region sequence analyses were used to determine the population and distinct population segment (DPS) origin of 173 Atlantic sturgeon Acipenser oxyrinchus oxyrinchus encountered from the Gulf of Maine to Cape Hatteras, North Carolina, in NOAA's Northeast Fisheries Observer Program. It was found that the Hudson River was by far the greatest contributor to this coastal by‐catch, with 42·2–46·3% of specimens originating there. Generally, specimens represented the geographic province of the river in which they were spawned, but some specimens, particularly those originating in the South Atlantic DPS, moved to great distances. Genetic mixed‐stock analyses provide an accurate approach to determine the DPS and population origin of A. o. oxyrinchus by‐catch in coastal waters, but most informative management requires that these results be partitioned by locale, season, target fishery and gear type.  相似文献   

12.
13.
14.
15.
Some studies have found that dispersal rates and distances increase with density, indicating that density‐dependent dispersal likely affects spatial genetic structure. In an 11‐year mark–recapture study on a passerine, the dark‐eyed junco, we tested whether density affected dispersal distance and/or fine‐scale spatial genetic structure. Contrary to expectations, we found no effect of predispersal density on dispersal distance or the proportion of locally produced juveniles returning to the population from which they hatched. However, even though density did not affect dispersal distance or natal return rates, we found that density still did affect spatial genetic structure. We found significant positive spatial genetic structure at low densities of (postdispersal) adults but not at high densities. In years with high postdispersal (adult) densities that also had high predispersal (juvenile) densities in the previous year, we found negative spatial genetic structure, indicating high levels of dispersal. We found that density also affected fitness of recruits, and fitness of immigrants, potentially linking these population parameters with the spatial genetic structure detected. Immigrants and recruits rarely nested in low postdispersal density years. In contrast, in years with high postdispersal density, recruits were common and immigrants had equal success to local birds, so novel genotypes diluted the gene pool and effectively eliminated positive spatial genetic structure. In relation to fine‐scale spatial genetic structure, fitness of immigrants and new recruits is poorly understood compared to dispersal movements, but we conclude that it can have implications for the spatial distribution of genotypes in populations.  相似文献   

16.
Sex‐biased dispersal is pervasive and has diverse evolutionary implications, but the fundamental drivers of dispersal sex biases remain unresolved. This is due in part to limited diversity within taxonomic groups in the direction of dispersal sex biases, which leaves hypothesis testing critically dependent upon identifying rare reversals of taxonomic norms. Here, we use a combination of observational and genetic data to demonstrate a rare reversal of the avian sex bias in dispersal in the cooperatively breeding white‐browed sparrow weaver (Plocepasser mahali). Direct observations revealed that (i) natal philopatry was rare, with both sexes typically dispersing locally to breed, and (ii), unusually for birds, males bred at significantly greater distances from their natal group than females. Population genetic analyses confirmed these patterns, as (i) corrected Assignment index (AIc), FST tests and isolation‐by‐distance metrics were all indicative of longer dispersal distances among males than females, and (ii) spatial autocorrelation analysis indicated stronger within‐group genetic structure among females than males. Examining the spatial scale of extra‐group mating highlighted that the resulting ‘sperm dispersal’ could have acted in concert with individual dispersal to generate these genetic patterns, but gamete dispersal alone cannot account entirely for the sex differences in genetic structure observed. That leading hypotheses for the evolution of dispersal sex biases cannot readily account for these sex‐reversed patterns of dispersal in white‐browed sparrow weavers highlights the continued need for attention to alternative explanations for this enigmatic phenomenon. We highlight the potential importance of sex differences in the distances over which dispersal opportunities can be detected.  相似文献   

17.
18.
Sequence-specific assignment of the methyl groups in large proteins can be obtained from an MQ-(H)CCmHm-TOCSY experiment on uniformly 13C-labeled proteins without deuteration (Yang etal., 2004). Here the procedure is further demonstrated on a uniformly 13C-labeled -chain or -chain of human normal adult hemoglobin (65kDa) in the carbonmonoxy form. In addition, a strategy is presented for assigning protons of methyl-containing residues of uniformly 13C-labeled large proteins, on the basis of prior methyl assignments based on MQ-(H)CCH-TOCSY and H(C)CmHm-TOCSY experiments. Assignment of about 80% of the side-chain resonances of methyl-containing residues of carbonmonoxyhemoglobin has been obtained.  相似文献   

19.
Summary We present ALPS (Assignment for Labelled Protein Spectra), a flexible computer program for the automatic assignment of backbone NMR resonances of 15N/13C-labelled proteins. The program constructs pseudoresidues from peak-picking lists of a set of two-dimensional triple resonance experiments and uses either a systematic search or a simulated annealing-based optimization to perform the assignment. This method has been successfully tested on two-dimensional triple resonance spectra of Rhodobacter capsulatus ferrocytochrome c 2 (116 amino acids).  相似文献   

20.
Deciphering genetic structure and inferring connectivity in marine species have been challenging due to weak genetic differentiation and limited resolution offered by traditional genotypic methods. The main goal of this study was to assess how a population genomics framework could help delineate the genetic structure of the American lobster (Homarus americanus) throughout much of the species’ range and increase the assignment success of individuals to their location of origin. We genotyped 10 156 filtered SNPs using RAD sequencing to delineate genetic structure and perform population assignment for 586 American lobsters collected in 17 locations distributed across a large portion of the species’ natural distribution range. Our results revealed the existence of a hierarchical genetic structure, first separating lobsters from the northern and southern part of the range (FCT = 0.0011; P‐value = 0.0002) and then revealing a total of 11 genetically distinguishable populations (mean FST = 0.00185; CI: 0.0007–0.0021, P‐value < 0.0002), providing strong evidence for weak, albeit fine‐scale population structuring within each region. A resampling procedure showed that assignment success was highest with a subset of 3000 SNPs having the highest FST. Applying Anderson's (Molecular Ecology Resources, 2010, 10, 701) method to avoid ‘high‐grading bias’, 94.2% and 80.8% of individuals were correctly assigned to their region and location of origin, respectively. Lastly, we showed that assignment success was positively associated with sample size. These results demonstrate that using a large number of SNPs improves fine‐scale population structure delineation and population assignment success in a context of weak genetic structure. We discuss the implications of these findings for the conservation and management of highly connected marine species, particularly regarding the geographic scale of demographic independence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号