首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Afforestation and fire exclusion are pervasive threats to tropical savannas. In Brazil, laws limiting prescribed burning hinder the study of fire in the restoration of Cerrado plant communities. We took advantage of a 2017 wildfire to evaluate the potential for tree cutting and fire to promote the passive restoration of savanna herbaceous plant communities after destruction by exotic tree plantations. We sampled a burned pine plantation (Burned Plantation); a former plantation that was harvested and burned (Harvested & Burned); an unburned former plantation that was harvested, planted with native trees, and treated with herbicide to control invasive grasses (Native Tree Planting); and two old-growth savannas which served as reference communities. Our results confirm that herbaceous plant communities on post-afforestation sites are very different from old-growth savannas. Among post-afforestation sites, Harvested & Burned herbaceous communities were modestly more similar in composition to old-growth savannas, had slightly higher richness of savanna plants (3.8 species per 50-m2), and supported the greatest cover of native herbaceous plants (56%). These positive trends in herbaceous community recovery would be missed in assessments of tree cover: whereas canopy cover in the Harvested & Burned site was 6% (less than typical of savannas of the Cerrado), the Burned Plantation and Native Tree Planting supported 34% and 19% cover, respectively. By focusing on savanna herbaceous plants, these results highlight that tree cutting and fire, not simply tree planting and fire exclusion, should receive greater attention in efforts to restore savannas of the Cerrado.  相似文献   

2.
Slik JW  Eichhorn KA 《Oecologia》2003,137(3):446-455
The objective of this study was to relate patterns in forest structure, tree species diversity, and tree species composition to stem diameters and topography in unburned, once burned and twice burned lowland dipterocarp rain forests in East Kalimantan, Indonesia. To do this four unburned old growth forests were compared with three forests that burned once (1997/1998) and three forests that burned twice (1982/1983 and 1997/1998). Fire resulted in a strong reduction of climax tree density which was negatively related to tree diameter. However, a disproportionate reduction in small diameter understorey climax tree species occurred only after repeated fires. Climax tree species in both burned forest types were most common in swamps, river valleys and on lower slopes, while their density was much lower on places higher along hillsides. In unburned forest the opposite was observed, with climax tree density increasing steadily from swamp and river valleys to upper slopes and ridges. In contrast to climax trees, pioneer trees were abundant throughout the burned forest, with highest numbers on hill sides and ridges. Our results indicate that both diameter and topographic position of trees strongly affect their fire survival chances in tropical lowland forests.  相似文献   

3.
1. Burning typically occurs at intervals of 1–3-years in the Brazilian cerrado, a rate that exceeds the precolonization fire regime. To determine if woody plants of the cerrado successfully reproduce within the short span of time between burns, experimental burns were used to quantify the effects of fire on sexual and vegetative reproduction of six species of resprouting trees and shrubs.
2. Four of the six species reproduce vegetatively by producing root suckers. For three of these species, Rourea induta , Myrsine guianensis and Roupala montana , sucker production was seven to 15 times greater in burned plots than in unburned controls.
3. Fire had a negative impact on sexual reproduction. Fire caused an immediate reduction in sexual reproductive success by destroying developing reproductive structures and seeds. Additionally, five of the six study species exhibited overall reductions in seed production in the years following fire. Fire had this effect by reducing the individual size of all species and, for three species, by reducing size-specific reproductive output. Only the tree Piptocarpha rotundifolia exhibited increased seed production following burning.
4. Fire caused substantial mortality to both seedlings and suckers. Suckers were larger than seedlings and experienced lower mortality rates for two of three species. Fire-induced mortality of seedlings varied greatly among species, ranging from 33% to 100%.
5. The results indicate that vegetative reproduction is much more successful than sexual reproduction under the high fire frequency typical of current fire regimes. It is concluded that current fire regimes must be causing a shift in species composition, favouring species capable of vegetative reproduction.  相似文献   

4.
Questions: How do fire frequency, tree canopy cover, and their interactions influence cover of grasses, forbs and understorey woody plants in oak savannas and woodlands? Location: Minnesota, USA. Methods: We measured plant functional group cover and tree canopy cover on permanent plots within a long‐term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Results: Understorey woody plant cover was highest in unburned woodlands and was negatively correlated with fire frequency. C4‐grass cover was positively correlated with fire frequency and negatively correlated with tree canopy cover. C3‐grass cover was highest at 40% tree canopy cover on unburned sites and at 60% tree canopy cover on frequently burned sites. Total forb cover was maximized at fire frequencies of 4–7 fires per decade, but was not significantly influenced by tree canopy cover. Cover of N‐fixing forbs was highest in shaded areas, particularly on frequently burned sites, while combined cover of all other forbs was negatively correlated with tree canopy cover. Conclusions: The relative influences of fire frequency and tree canopy cover on understorey plant functional group cover vary among plant functional groups, but both play a significant role in structuring savanna and woodland understorey vegetation. When restoring degraded savannas, direct manipulation of overstorey tree canopy cover should be considered to rapidly reduce shading from fire‐resistant overstorey trees. Prescribed fires can then be used to suppress understorey woody plants and promote establishment of light‐demanding grasses and forbs.  相似文献   

5.
The failure of seeds to arrive at all suitable sites (seed limitation) greatly affects plant distribution and abundance. In contrast to tropical forests, the degree of seed limitation in Neotropical savannas is unclear because empirical studies at the community level are scarce. We estimated seed limitation of 23 woody species from annual seed rain measurements along a tree density gradient in the savannas of Central Brazil. These savannas differ in tree density and canopy cover, from closed to open savannas, and are located along shallow topographic gradients. We also studied post-dispersal seed predation and removal of 17 representative woody species, and seed viability loss over time of 12 common woody species under dry-storage conditions. Annual seed rain was lower in open (410 seeds/m2) than in closed savannas (773 seeds/m2). Average seed limitation across woody species was higher than 80% along the tree density gradient. More than 60% of seeds of the studied woody species were predated or removed within 30–45 days in all savannah types. Seeds of most common woody species (66%) lost their viability in less than 12 months of dry storage. This study shows that Neotropical savannah woody plants are strongly seed-limited because of low and poor distribution of seeds among sites, post-dispersal seed removal, and short seed longevity. The high seed limitation of tree species in Neotropical savannas, particularly in open savannas, also may contribute to maintain their relatively low tree densities and help to explain the spatial variation of tree abundance along topographic gradients.  相似文献   

6.

Fire is a key factor triggering ecological processes in old-growth grasslands and savannas and could have strong implications for reproduction via seeds for the herbaceous layer. In the Neotropical savannas, grasses show strong synchronous post-fire flowering, and their reproduction is often considered fire-dependent, with their massive post-fire seed production being suggested as a source of population maintenance. However, literature lacks studies to provide evidence of fire-dependent flowering and no study has assessed the quality of the post-fire seed production. Therefore, we aimed to describe a phenological pattern across early-flowering Neotropical savanna grasses in both recently burnt and unburnt cerrado communities addressing three questions: (1) Do the early-flowering species rely on fire for reproduction via seeds? (2) If no, what are the effects of fire on their reproductive phenology? (3) Does the massive seed production in post-fire cerrado communities lead to high-quality seeds? We recorded the reproductive phenology of nine early-flowering grasses for 17 weeks in unburnt and recently burnt cerrado communities. We collected the seeds, estimated the production of fertile seeds, and tested germination. No species showed a pattern of fire-dependent reproduction. Fire stimulated earlier flowering while reproduction in the unburnt community was related to continuous rainfall. Seed production following fire was of low quality, and no species produced?>?7% fertile seeds. Seed germination remained below 50% for most species. Post-fire seed production of early-flowering species led to poor seed quality, suggesting a constraint to the recruitment of new individuals of early-flowering Neotropical savanna grasses in recently burnt cerrados.

  相似文献   

7.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

8.
Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade) were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover) and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover). Although these effects were transitory, there is evidence that the increasingly prevalent fire return interval of only 1–2 years may jeopardize the long-term conservation of litter arthropod communities.  相似文献   

9.
Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought‐fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire‐driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2‐million km2 Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait‐based differences in fire tolerance is critical for determining the climate‐carbon‐fire feedback in tropical savanna and forest biomes.  相似文献   

10.
Fire is an important determinant of many aspects of savanna ecosystem structure and function. However, relatively little is known about the effects of fire on faunal biodiversity in savannas. We conducted a short‐term study to examine the effects of a replicated experimental burn on bird diversity and abundance in savanna habitat of central Kenya. Twenty‐two months after the burn, Shannon diversity of birds was 32% higher on plots that had been burned compared with paired control plots. We observed no significant effects of burning on total bird abundance or species richness. Several families of birds were found only on plots that had been burned; one species, the rattling cisticola (Cisticola chiniana), was found only on unburned plots. Shrub canopy area was negatively correlated with bird diversity on each plot, and highly correlated with grass height and the abundance of orthopterans. Our results suggest that the highest landscape‐level bird diversity might be obtained through a mosaic of burned and unburned patches. This is also most likely to approximate the historical state of bird diversity in this habitat, because patchy fires have been an important natural disturbance in tropical ecosystems for millennia.  相似文献   

11.
Resprouting is an efficient life history strategy by which woody savanna species can recover their aboveground biomass after fire. However, resprouting dynamics after fire and the time it takes to start producing flowers and fruits are still poorly understood, especially for the Brazilian savanna (Cerrado biome), where fire is an important driver of vegetation structure and ecosystem functioning. We investigated the resprouting dynamics and production of flowers and fruits of 26 woody species (20 tree and 6 shrub species for a total of 485 individuals) that were burned and the production of flowers and fruits for a subset of 12 species (139 individuals) in an unburned area in a Brazilian savanna. We classified the species’ resprouting strategies as hypogeal (at the soil level, with main stem death), epigeal (on the main stem or crown), and hypogeal + epigeal. We used generalized linear mixed-effect models to identify the post-fire recovery patterns for five years. Individuals with basal resprouts (hypogeal and hypogeal + epigeal resprouting) produced an average of 6 basal resprouts, but only 33% of resprouts survived after five years. Individuals in burned areas produced fewer flowers and fruits than individuals in unburned areas. At least a subset of individuals in all the resprouting strategies started to produce flowers and fruits in the first-year post-fire. About 68% of the species with hypogeal resprouts produced flowers and fruits in the first-year post-fire, but the intensity of flowering and fruiting was lower compared to individuals with other resprouting strategies over time. Although woody species have invested in post-fire growth and sexual reproduction in all resprouting strategies, the long time needed to recover these processes can make these species more vulnerable to frequent fires.  相似文献   

12.
Woody encroachment is becoming common in tropical savannas. We studied natural seed rain and performed seed addition experiments in a Brazilian savanna that had not been burned for several decades. We found greater abundance of fire‐sensitive species in the seed rain, likely contributing to woody encroachment. Flexible fire management policies that allow for natural and prescribed fires may be required to maintain savanna diversity.  相似文献   

13.
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species richness and community heterogeneity within a mosaic of grassland, oak savanna, oak woodland, and forest communities. Species richness was assessed for all vascular plant species and for three plant functional groups: grasses, forbs, and woody plants. Understory species richness and community heterogeneity were maximized at biennial fire frequencies, consistent with predictions of the intermediate disturbance hypothesis. However, overstory tree species richness was highest in unburned units and declined with increasing fire frequency. Maximum species richness was observed in unburned units for woody species, with biennial fires for forbs, and with near-annual fires for grasses. Savannas and woodlands with intermediate and spatially variable tree canopy cover had greater species richness and community heterogeneity than old-field grasslands or closed-canopy forests. Functional group species richness was positively correlated with functional group cover. Our results suggest that annual to biennial fire frequencies prevent shrubs and trees from competitively excluding grasses and prairie forbs, while spatially variable shading from overstory trees reduces grass dominance and provides a wider range of habitat conditions. Hence, high species richness in savannas is due to both high sample point species richness and high community heterogeneity among sample points, which are maintained by intermediate fire frequencies and variable tree canopy cover.  相似文献   

14.
Abstract Changes in plant abundance within a eucalypt savanna of north‐eastern Australia were studied using a manipulative fire experiment. Three fire regimes were compared between 1997 and 2001: (i) control, savanna burnt in the mid‐dry season (July) 1997 only; (ii) early burnt, savanna burnt in the mid‐dry season 1997 and early dry season (May) 1999; and (iii) late burnt, savanna burnt in the mid‐dry season 1997 and late dry season (October) 1999. Five annual surveys of permanent plots detected stability in the abundance of most species, irrespective of fire regime. However, a significant increase in the abundance of several subshrubs, ephemeral and twining perennial forbs, and grasses occurred in the first year after fire, particularly after late dry season fires. The abundance of these species declined toward prefire levels in the second year after fire. The dominant grass Heteropogon triticeus significantly declined in abundance with fire intervals of 4 years. The density of trees (>2 m tall) significantly increased in the absence of fire for 4 years, because of the growth of saplings; and the basal area of the dominant tree Corymbia clarksoniana significantly increased over the 5‐year study, irrespective of fire regime. Conservation management of these savannas will need to balance the role of regular fires in maintaining the diversity of herbaceous species with the requirement of fire intervals of at least 4‐years for allowing the growth of saplings >2 m in height. Whereas late dry season fires may cause some tree mortality, the use of occasional late fires may help maintain sustainable populations of many grasses and forbs.  相似文献   

15.
Question: What are the effects of fire season and intensity on resprouting of different root‐crown bearing shrub species in second‐growth Pinus palustris (longleaf pine) savannas? Location: northern Florida and eastern Louisiana, USA. Methods: In Florida, quadrats were burned biennially either during the dormant season or the growing season. In Louisiana, we applied intensity treatments to quadrats by manipulating ground‐cover fuels, just prior to biennial growing season fires. Maximum fire temperatures were measured, and stem densities were censused before and after fires in both regions. Results: After dormant season fires in Florida, stem densities were seven times greater than initial levels for Hypericum spp. In contrast, growing season fires reduced densities of H. brachyphyllum by 65%, but did not change densities of H. microsepalum. Only resprouting of H. microsepalum decreased with increased fire intensity. In Louisiana, fire intensity influenced Ilex vomitoria, but not Quercus spp. Following fires, stem densities oil. vomitoria were five times greater in fuel removal than fuel addition areas. Conclusions: Past use of dormant season fires likely contributed to increased abundances of some species of root‐crown bearing shrubs observed today in old‐growth savannas. Reintroduction of growing season fires will be effective in maintaining or decreasing stem densities, depending on species and fuel type. Genet mortality and stem density reductions appear most likely in areas at localized scales where tree falls and needle coverage create hotspots in Pinus palustris savannas.  相似文献   

16.
This study analyzes the variations in the structure and composition of ant communities in burned Pinus nigra forests in central Catalonia (NE Spain). Pinus nigra forests do not recover after fire, changing to shrublands and oak coppices. For this reason, we suggest that ant communities of burned P. nigra forests will change after fire, because the post‐fire scenario, in particular with the increase of open areas, is different to the unburned one, and more favourable for some species than for others. In four locations previously occupied by P. nigra forests where different fires occurred 1, 5, 13 and 19 yr before the sampling, we sampled the structure and composition of ant communities with pitfall traps, tree traps and net sweeping in unburned plots and in plots affected by canopy and understory fire. The results obtained suggest that canopy and understory fire had little effect on the structure of ant communities. Thus, many variables concerning ant communities were not modified either by fire type (understory or canopy fire) or by time since fire. However, a number of particular species were affected, either positively or negatively, by canopy fire: three species characteristic of forest habitats decreased after fire, while eight species characteristic of open habitats increased in areas affected by canopy fire, especially in the first few years after fire. These differences in ant community composition between burned and unburned plots imply that the maximum richness is achieved when there is a mixture of unburned forests and areas burned with canopy fire. Moreover, as canopy cover in P. nigra forests burned with canopy fire is not completed in the period of time studied, the presence of the species that are characteristic of burned areas remains along the chronosequence studied, while the species that disappear after fire do not recover in the period of time considered. Overall, the results obtained indicate that there is a persistent replacement of ant species in burned P. nigra forests, as is also the case with vegetation.  相似文献   

17.

Aims

The effects of fire ensure that large areas of the seasonal tropics are maintained as savannas. The advance of forests into these areas depends on shifts in species composition and the presence of sufficient nutrients. Predicting such transitions, however, is difficult due to a poor understanding of the nutrient stocks required for different combinations of species to resist and suppress fires.

Methods

We compare the amounts of nutrients required by congeneric savanna and forest trees to reach two thresholds of establishment and maintenance: that of fire resistance, after which individual trees are large enough to survive fires, and that of fire suppression, after which the collective tree canopy is dense enough to minimize understory growth, thereby arresting the spread of fire. We further calculate the arboreal and soil nutrient stocks of savannas, to determine if these are sufficient to support the expansion of forests following initial establishment.

Results

Forest species require a larger nutrient supply to resist fires than savanna species, which are better able to reach a fire-resistant size under nutrient limitation. However, forest species require a lower nutrient supply to attain closed canopies and suppress fires; therefore, the ingression of forest trees into savannas facilitates the transition to forest. Savannas have sufficient N, K, and Mg, but require additional P and Ca to build high-biomass forests and allow full forest expansion following establishment.

Conclusions

Tradeoffs between nutrient requirements and adaptations to fire reinforce savanna and forest as alternate stable states, explaining the long-term persistence of vegetation mosaics in the seasonal tropics. Low-fertility limits the advance of forests into savannas, but the ingression of forest species favors the formation of non-flammable states, increasing fertility and promoting forest expansion.  相似文献   

18.
Abstract We investigated effects of fire frequency, seasonal timing, and plant community on patchiness and intensity of prescribed fires in subtropical savannas in the Long Pine Key region of Everglades National Park, Florida (U.S.A.). We measured patchiness and intensity in different plant communities along elevation gradients in “fire blocks.” These blocks were prescribed burned at varying times during the lightning season and at different frequencies between 1995 and 2000. Fire frequency, seasonal timing, and plant community all influenced the patchiness and intensity of prescribed fires. Fires were less patchy and more intense, probably because of drier conditions and pyrogenic fuels, in higher elevation plant communities (e.g., high pine savannas) than in lower elevation communities (e.g., long‐hydroperiod prairies). In all plant communities fires became increasingly patchy and less intense as the wet season progressed and moisture accumulated in fuels. Frequent prescribed fire resulted in increased patchiness but a wider range of intensities; higher intensities appeared to result from regrowth of more flammable vegetation. Our study suggests that frequent early lightning season prescribed fires produce a wider range of post‐fire conditions than less frequent late lightning season prescribed fires. Our study also suggests that natural early lightning season fires readily carried through pine savannas and short‐hydroperiod prairies, but lower elevation long‐hydroperiod prairies functioned as firebreaks. Natural fires probably crossed these firebreaks only during drier years, potentially producing large landscape‐level fires. Knowledge of how patchily and intensely fires burn across a savanna landscape should be useful for developing landscape‐level fire management.  相似文献   

19.
Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent decades, however, tropical forest fires occur more frequently and at larger spatial scales than they used to. We studied forest structure, tree species diversity, tree species composition, and aboveground biomass during the first 7 years since fire in unburned, once burned and twice burned forest of eastern Borneo to determine the rate of recovery of these forests. We paid special attention to changes in the tree species composition during burned forest regeneration because we expect the long-term recovery of aboveground biomass and ecosystem functions in burned forests to largely depend on the successful regeneration of the pre-fire, heavy-wood, species composition. We found that forest structure (canopy openness, leaf area index, herb cover, and stem density) is strongly affected by fire but shows quick recovery. However, species composition shows no or limited recovery and aboveground biomass, which is greatly reduced by fire, continues to be low or decline up to 7 years after fire. Consequently, large amounts of the C released to the atmosphere by fire will not be recaptured by the burned forest ecosystem in the near future. We also observed that repeated fire, with an inter-fire interval of 15 years, does not necessarily lead to a huge deterioration in the regeneration potential of tropical forest. We conclude that burned forests are valuable and should be conserved and that long-term monitoring programs in secondary forests are necessary to determine their recovery rates, especially in relation to aboveground biomass accumulation.  相似文献   

20.
《Flora》2014,209(5-6):260-270
Fire disturbance alters the structural complexity of forests, above-ground biomass stocks and patterns of growth, recruitment and mortality that determine temporal dynamics of communities. These changes may also alter forest species composition, richness, and diversity. We compared changes in plant recruitment, mortality, and turnover time over three years between burned and unburned sites of two seasonally flooded natural forest patches in a predominantly savanna landscape (regionally called ‘impucas’) in order to determine how fire alters forest dynamics and species composition. Within each impuca, 50 permanent plots (20 m × 10 m) were established and all individuals ≥5 cm diameter at breast height (DBH) identified and measured in two censuses, the first in 2007 and the second in 2010. Unplanned fires burned 30 plots in impuca 1 and 35 in impuca 2 after the first census, which enabled thereafter the comparison between burned and unburned sites. The highest mortality (8.0 and 24.3% year−1 for impuca 1 and 2) and turnover time (69 and 121.5 years) were observed in the burned sites, compared to 3.7 and 5.2% year−1 (mortality), and 28.4 and 40.9 years (turnover), respectively, for the unburned sites. Although these seasonally flooded impuca forests are embedded in a fire-adapted savanna landscape, the impucas vegetation appears to be sensitive to fire, with burned areas having higher mortality and turnover than unburned areas. This indicates that these forest islands are potentially at risk if regional fire frequency increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号