首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim We review several aspects of the structure of regional and local assemblages of nectar‐feeding birds and bats and their relationships with food plants to determine the extent to which evolutionary convergence has or has not occurred in the New and Old World tropics. Location Our review is pantropical in extent and also includes the subtropics of South Africa and eastern Australia. Within the tropics, it deals mostly with lowland forest habitats. Methods An extensive literature review was conducted to compile data bases on the regional and local species richness of nectar‐feeding birds and bats, pollinator sizes, morphology, and diets. Coefficients of variation (CVs) were used to quantify the morphospace occupied by the various families of pollinators. The extent to which plants have become evolutionarily specialized for vertebrate pollination was explored using several criteria: number and diversity of growth forms of plant families providing food for all the considered pollinator families; the most common flower morphologies visited by all the considered pollinator families; and the number of plant families that contain genera with both bird‐ and bat‐specialized species. Results Vertebrate pollinator assemblages in the New World tropics differ from those in the Old World in terms of their greater species richness, the greater morphological diversity of their most specialized taxa, and the greater degree of taxonomic and ecological diversity and morphological specialization of their food plants. Within the Old World tropics, Africa contains more specialized nectar‐feeding birds than Asia and Australasia; Old World nectar‐feeding bats are everywhere less specialized than their New World counterparts. Main conclusions We propose that two factors – phylogenetic history and spatio‐temporal predictability (STP) of flower resources – largely account for hemispheric and regional differences in the structure of vertebrate pollinator assemblages. Greater resource diversity and resource STP in the New World have favoured the radiation of small, hovering nectar‐feeding birds and bats into a variety of relatively specialized feeding niches. In contrast, reduced resource diversity and STP in aseasonal parts of Asia as well as in Australasia have favoured the evolution of larger, non‐hovering birds and bats with relatively generalized feeding niches. Tropical Africa more closely resembles the Neotropics than Southeast Asia and Australasia in terms of resource STP and in the niche structure of its nectar‐feeding birds but not its flower‐visiting bats.  相似文献   

2.
Foraging theory predicts that generalist foragers should switch resources more readily, while specialist foragers should remain constant to preferred food resources. Plant‐pollinator interactions provide a convenient system to test such predictions because floral resources are often temporally patchy, thus requiring long‐lived pollinators to switch resources seasonally. Furthermore, flowering phenologies range from ‘steady‐state’ (low‐rewarding but highly reliable) to ‘big‐bang’ (high‐rewarding but ephemeral) plant species. We assessed how nectarivorous Old World bats respond to this temporally variable floral environment by examining their diets throughout the year. Over 15 months of fieldwork in southern Thailand, we simultaneously: (1) recorded the flowering phenologies of six bat‐pollinated plant taxa; and (2) assessed the diets of seven common flower‐visiting bat species. As predicted, the generalist nectarivore (Eonycteris spelaea) frequently switched diets and utilized both big‐bang and steady‐state resources, while the specialist nectarivores (Macroglossus minimus and M. sobrinus) foraged on one or two steady‐state plant species year‐round. Our results suggest that larger and faster bat species are able to fly longer distances in search of big‐bang resources, while smaller bat species rely on highly predictable food resources. This study supports the theory that generalist foragers have flexible diets, while specialist species restrict foraging to preferred floral resources even when other floral resources are more abundant. Moreover, these findings demonstrate how plant flowering phenology and pollinator diet breadth can shape the frequency and constancy of pollinator visits; we further discuss how such interactions can influence the potential extent of gene flow within a patchy floral environment.  相似文献   

3.
4.
Columnar cacti constitute the dominant elements in the vegetation structure of arid and semi‐arid New World ecosystems representing a plethora of food resources for vertebrate consumers. Previous stable isotope analysis in Central Mexico showed that columnar cacti are of low importance to build tissue for frugivorous bats. We used carbon stable isotope analysis of whole blood and breath samples collected from four species of frugivorous bats (Sturnira parvidens, Sturnira ludovici, Artibeus jamaicensis, and Artibeus intermedius) to reconstruct the importance of cactus plants in their diet. Breath samples were collected within 10 min (B10) of bat capture and ~12 h after capture (B720), representing the oxidation of recently ingested food and of body reserves, respectively. We expected that bats relied primarily on non‐cactus food to construct tissues and fuel oxidative metabolism. Non‐cactus food strongly predominated for tissue building, whereas oxidative metabolism was supported by a moderate preponderance of non‐cactus food for B10 samples, and a moderate preponderance of cactus food or an equal contribution of both sources for B720 samples. Artibeus and Surnira species appear to cover a narrow part of the diet with cactus food, confirming that the incorporation of nutrients derived from these plants is not generalized among vertebrate consumers.  相似文献   

5.
Habitat heterogeneity is a primary ecological factor that is particularly pronounced in arid ecosystems. The Tehuacán valley is a subtropical semi‐arid ecosystem in which several species of columnar cacti and agave (i.e., CAM plants) constitute the dominant elements accompanied by patches of trees and shrubs (i.e., C3 plants). Vegetation in Tehuacán is isotopically heterogenous because CAM plants have less depleted δ13C values than C3 plants. Fruits and flowers of cactus and agaves offer abundant food to vertebrates, but their leaves might be less attractive to insects than the leaves of C3 plants. Therefore, we use carbon and nitrogen stable isotope analysis to test the hypothesis that C3 and CAM food would contribute asymmetrically to different guilds of birds and bats. We predict that granivorous and frugivorous birds and nectarivorous and frugivorous bats will consume a CAM diet, whereas insectivorous birds and bats will consume a C3 diet. Due to omnivory of bird and bat consumers, we predict that the importance of CAM food will decrease as the trophic level of the animal increases. Our results showed that CAM food predominated in plant‐eating birds and in some flower‐visiting bats, whereas C3 food predominated in insect‐eating bats and birds and frugivorous bats. Habitat heterogeneity in Tehuacán is important for conservation due to the asymmetric role of CAM and C3 food in the nutrition of different feeding guilds of vertebrates. Our study provides basic information to evaluate the potential impact of habitat loss on functional groups of consumers in a semi‐arid ecosystem.  相似文献   

6.
Bats are a diverse radiation of mammals of enduring interest for understanding the evolution of sensory specialization. Colour vision variation among species has previously been linked to roosting preferences and echolocation form in the suborder Yinpterochiroptera, yet questions remain about the roles of diet and habitat in shaping bat visual ecology. We sequenced OPN1SW and OPN1LW opsin genes for 20 species of leaf‐nosed bats (family Phyllostomidae; suborder Yangochiroptera) with diverse roosting and dietary ecologies, along with one vespertilionid species (Myotis lavali). OPN1LW genes appear intact for all species, and predicted spectral tuning of long‐wavelength opsins varied among lineages. OPN1SW genes appear intact and under purifying selection for Myotis lavali and most phyllostomid bats, with two exceptions: (a) We found evidence of ancient OPN1SW pseudogenization in the vampire bat lineage, and loss‐of‐function mutations in all three species of extant vampire bats; (b) we additionally found a recent, independently derived OPN1SW pseudogene in Lonchophylla mordax, a cave‐roosting species. These mutations in leaf‐nosed bats are independent of the OPN1SW pseudogenization events previously reported in Yinpterochiropterans. Therefore, the evolution of monochromacy (complete colour blindness) has occurred in both suborders of bats and under various evolutionary drivers; we find independent support for the hypothesis that obligate cave roosting drives colour vision loss. We additionally suggest that haematophagous dietary specialization and corresponding selection on nonvisual senses led to loss of colour vision through evolutionary sensory trade‐off. Our results underscore the evolutionary plasticity of opsins among nocturnal mammals.  相似文献   

7.
The aims of this study were to investigate the diet and relative abundance of fruit bats in a lowland Malaysian rain forest and to test the hypothesis that the local assemblage structure of fruit bats varies significantly over time in relation to the availability of food. In total, 352 fruit bats of eight species were captured during 72,306 m2 mist‐net hours of sampling between February 1996 and September 1999. Three species of fruit bats (Balionycteris maculita, Chironax melanocephalus, and Cynopterus brachyotis) that fed on a wide range of “steady state” and “big bang” food resources were captured continuously throughout the study period, with no significant variation in capture rates over time. In contrast, five species that fed exclusively or almost exclusively on “big bang” food resources were sampled intermittently, with significant temporal variation in the capture rates of two species (Cynopterus horsfieldi and Megaerops ecaudatus). Significant variation in the capture rates of the remaining three species (Dyacopterus spadiceus, Eonycteris spelaea, and Rousettus amplexicaudatus) could not be detected due to small sample sizes. Since ephemeral “big bang” food resources were only sporadically available within the study area and were associated with large canopy trees and strangler figs, these results suggest that food abundance, or the availability of specific food items, may be important factors limiting local fruit bat species diversity in old‐growth Paleotropical rain forest. Thus, only three fruit bat species were locally resident within the forest throughout the study period. Therefore, further studies on the ranging behavior and habitat requirements of Malaysian fruit bats are required to assess the adequacy of existing reserves and protected areas.  相似文献   

8.
The efficiency of food exploitation correlates positively with the extent of dietary specialization. Neotropical nectar-feeding bats (Glossophaginae) have one of the most specialized diets among mammals, as floral nectar constitutes a sugar-rich and highly digestible but protein and fiber depleted food source. However, dietary constraints, such as a temporary scarcity of nectar, or protein demands may sometimes require the uptake of alternative food items. We investigated the influence of a diet switch from nectar to fruit on intestinal morphology, body mass, and energy budget in the nectar-feeding bat Glossophaga commissarisi and quantified feeding efficiency. We hypothesized that these nectar specialists depend on a constant supply of nectar, if they were lacking the ability for morphological and physiological plasticity in response to a fiber-rich diet. Although capable of harvesting infructescences of Piper hispidum, G. commissarisi was less efficient in extracting energy from fruits (48% digestive efficiency of total fruit energy content) than from nectar (c. 99% digestive efficiency). The intestinal morphology and organ masses did not change after bats were switched from nectar to fruits. Captive bats exhibited lower daily energy expenditures and flight activity when feeding on fruits than during nectarivory. Possibly, this may have been a deliberate regulation to balance reduced feeding efficiency, or simply the consequence of extended digestive pauses. The low digestibility of Piper, in combination with slow digestion and the bats’ inability for morphological and physiological plasticity may cause nectar-feeders to reduce their maximum energy expenditure when feeding on fruits. We argue that although fruits may substitute for nectar, they may cause restricted maximum energy assimilation compared with nectar.  相似文献   

9.
Madagascar has a distinctive fruit bat community consisting of Pteropus rufus, Eidolon dupreanum, and Rousettus madagascariensis. In this study, we observed fruit bat visits to flowering baobabs (Adansonia suarezensis and Adansonia grandidieri) and kapok trees (Ceiba pentandra) during the austral winter. Eidolon dupreanum was recorded feeding on the nectar of baobabs and kapok, P. rufus was observed feeding on kapok only and no R. madagascariensis were seen. Three mammals species, two small lemurs (Phaner furcifer and Mirza coquereli) and E. dupreanum, made nondestructive visits to flowering A. grandidieri and are therefore all potential pollinators of this endangered baobab. This is the first evidence to show that A. grandidieri is bat‐pollinated and further demonstrates the close link between fruit bats and some of Madagascar's endemic plants. Eidolon dupreanum was the only mammal species recorded visiting A. suarezensis and visits peaked at the reported times of maximum nectar concentration. Pteropus rufus visited kapok mostly before midnight when most nectar was available, but E. dupreanum visited later in the night. These differences in timing of foraging on kapok can be explained either by differing distances from the roost sites of each species or by resource partitioning. We advocate increased levels of protection, education awareness, and applied research on both mammal‐pollinated baobab species and fruit bats, and suggest that both baobabs and bats are candidate “flagship species” for the threatened dry forests of Madagascar.  相似文献   

10.
Plant–pollinator interactions are critical to ecosystems. However, when artificial nectar feeders are available in an area, they could draw pollinators away from plants. We tested the effects of artificial nectar feeders in an Ecuadorian cloud forest on four aspects of bat–plant interactions: (1) bat relative abundance; (2) bat pollen loads; (3) flower visitation rates, and (4) breeding success of a bat‐pollinated species (Burmeistera glabrata). We divided the study site into areas close to (~30 m) and far from (~500 m) three different feeder sites. At each distance, we captured nectar bats (Anoura caudifer, Anoura cultrata, and Lonchophylla robusta) to estimate their relative abundance and to collect pollen from fur and fecal samples. We also videotaped flowers to estimate bat visitation rates and recorded different breeding success variables of B. glabrata. We found that areas close to feeders have higher relative bat abundance by a factor of 40. In spite of this, the presence of feeders did not affect bat pollen loads, nor the flower visitation rates and breeding success of B. glabrata. Interestingly, there were differences in pollen loads between the three bat species, in that L. robusta individuals rarely carried pollen and were only captured near feeders.  相似文献   

11.
Shifting and permanent cultivation, selective logging, cattle production and coffee plantations are among the most important factors in montane cloud forest conversion and disturbance. Although shaded-coffee plantations can contribute to the preservation of local species richness, abundance of organisms could be determined by habitat resource availability in agricultural landscapes. We compared abundance of Sturnira and Artibeus bats (Phyllostomidae, Stenodermatinae), in shade coffee plantations and disturbed cloud forest fragments, which represent habitats with different chiropterochorous plant density. We also investigated the relationship between bat species abundance and food plant richness, abundance and diversity. We captured 956 bats, 76% in cloud forest fragments and 24% in shaded coffee plantations. Abundance of Sturnira spp. (small bats) was greater in cloud forest than in coffee plantations, but Artibeus spp. (large bats) abundance was similar in both habitats. Chiropterochorous plant abundance was positively related with bat abundance for Sturnira spp., while chiropterochorous plant richness and diversity were negatively related for Artibeus spp. This suggests that frugivorous bats with different morphological and ecological characteristics respond differentially to anthropogenic activities. For landscape management purposes, the maintenance and augmentation of diverse food resources, for frugivorous bats with different foraging requirements in coffee plantations, will benefit the resilience of bats to modification of their natural habitat.  相似文献   

12.
Competing hypotheses explaining species’ use of resources have been advanced. Resource limitations in habitat and/or food are factors that affect assemblages of species. These limitations could drive the evolution of morphological and/or behavioural specialization, permitting the coexistence of closely related species through resource partitioning and niche differentiation. Alternatively, when resources are unlimited, fluctuations in resources availability will cause concomitant shifts in resource use regardless of species identity. Here, we used next‐generation sequencing to test these hypotheses and characterize the diversity, overlap and seasonal variation in the diet of three species of insectivorous bats of the genus Pteronotus. We identified 465 prey (MOTUs) in the guano of 192 individuals. Lepidoptera and Diptera represented the most consumed insect orders. Diet of bats exhibited a moderate level of overlap, with the highest value between Pteronotus parnellii and Pteronotus personatus in the wet season. We found higher dietary overlap between species during the same seasons than within any single species across seasons. This suggests that diets of the three species are driven more by prey availability than by any particular predator‐specific characteristic. P. davyi and P. personatus increased their dietary breadth during the dry season, whereas P. parnellii diet was broader and had the highest effective number of prey species in all seasons. This supports the existence of dietary flexibility in generalist bats and dietary niche overlapping among groups of closely related species in highly seasonal ecosystems. Moreover, the abundance and availability of insect prey may drive the diet of insectivores.  相似文献   

13.
Members of the family Cimicidae (Heteroptera) are obligate haematophagous ectoparasites. The Cimex pipistrelli species group parasitizes on bats, the likely ancestral hosts of the whole family. Based on morphology, it was suggested that three species of the group were present in the West‐Palaearctic region, although their validity remained a matter of discussion. Surprisingly, the status of these species has not been studied from the point of view of host specificity. We examined the diversification of the species group using morphological data, including the putative diagnostic characters, and sequences of one mitochondrial (cytochrome oxidase subunit I, COI) and four nuclear loci (internal transcribed spacer 2, 18S and 28s ribosomal genes and elongation factor 1 subunit α). This was carried out on a sample of 225 individuals from 69 bat roosts and 44 mist‐netted bats, altogether representing 12 bat species from 13 European countries and Lebanon. We revealed 27 mitochondrial haplotypes representing two distinct haplogroups and one outlying haplotype. The extent of morphological variability of specimens representing both haplogroups covers the range of characters reported for all three recognized species; therefore, the haplogroups clearly do not correspond to any described species. Also, the very limited variability found in the nuclear sequences of the cimicid bugs examined suggests that separate species do not exist in the region. We found considerable morphological differentiation among samples from different bat species, although individuals representing particular mitochondrial haplogroups often live sympatrically and on the same host species. It seems that batbugs are morphologically adapted to a particular bat host despite the low genetic structuring among individuals parasitizing different species of bats.  相似文献   

14.
The aim of this study was to explore the diversity of ectoparasitic fungi (Ascomycota, Laboulbeniales) that use bat flies (Diptera, Hippoboscoidea) as hosts. Bat flies themselves live as ectoparasites on the fur and wing membranes of bats (Mammalia, Chiroptera); hence this is a tripartite parasite system. Here, we collected bats, bat flies, and Laboulbeniales, and conducted phylogenetic analyses of Laboulbeniales to contrast morphology with ribosomal sequence data. Parasitism of bat flies by Laboulbeniales arose at least three times independently, once in the Eastern Hemisphere (Arthrorhynchus) and twice in the Western Hemisphere (Gloeandromyces, Nycteromyces). We hypothesize that the genera Arthrorhynchus and Nycteromyces evolved independently from lineages of ectoparasites of true bugs (Hemiptera). We assessed phylogenetic diversity of the genus Gloeandromyces by considering the LSU rDNA region. Phenotypic plasticity and position‐induced morphological adaptations go hand in hand. Different morphotypes belong to the same phylogenetic species. Two species, G. pageanus and G. streblae, show divergence by host utilization. In our assessment of coevolution, we only observe congruence between the Old World clades of bat flies and Laboulbeniales. The other associations are the result of the roosting ecology of the bat hosts. This study has considerably increased our knowledge about bats and their associated ectoparasites and shown the necessity of including molecular data in Laboulbeniales taxonomy.  相似文献   

15.
Three species of nectar-feeding bats migrate from tropical and subtropical Mexico into the Sonoran and Chihuahuan deserts during the spring and summer months. We examined geographic and seasonal changes in the diet of one migrant species, Leptonycteris curasoae, using carbon stable isotope techniques to determine the relative importance of C3 and CAM (Cactaceae, Agavaceae) plants in its diet. We also examined the diet of a non-migratory nectar-feeding bat, Glossophaga soricina, from southern Mexico using the same techniques. We found that L. curasoae feeds extensively or exclusively on CAM plants during migration and in the northern part of its range and feeds mostly on C3 plants in southern Mexico. This bat is a year-round resident on Baja California where it is a CAM specialist. The non-migrant G. soricina feeds mostly on C3 plants year-round. Phenological data suggest that certain species of columnar cacti and at least one group of paniculate Agaves on the Mexican mainland provide a spatio-temporally predictable nectar corridor along which nectarivorous bats may migrate in the spring and fall, respectively. Different flowering schedules of Agaves in Baja California appear to promote year-round dietary specialization and perhaps non-migratory behavior in nectar-feeding bats living there.  相似文献   

16.
I present data on flower morphology, pollination, breeding system, and genetic diversity of the columnar cactus Weber-bauerocereus weberbaueri at 2500 m elevation in southwestern Peru. Weberbauerocereus weberbaueri is a self-compatible columnar cactus that is visited and pollinated by one species of rare endemic bat, Platalina genovensium, and two species of hummingbirds, Patagona gigas and Rhodopis vesper. W. weberbaueri exhibits pronounced interplant variation in floral color and size, and flowers exhibit traits corresponding to both bat and hummingbird pollination syndromes. Starch-gel electrophoresis of flower bud tissue indicated that W. weberbaueri is an autotetraploid and that genetic diversity (Hep = 0.257) of the study population was high relative to diploid plants but similar to other tetraploid species. Initial fruit set from pollinator exclusion experiments conducted in 1991 and 1993, at the onset of and after a drought associated with the El Niño event of 1991–1992, revealed that bats were the most important pollinators in 1991, but that hummingbirds and diurnal insects were most important in 1993. In both years, however, autogamy and lepidopteran larval infestation of fruits reduced differences in mature fruit production among pollinator exclusion treatments so that differences in mature fruit set were not statistically significant. Reduced bat pollination in 1993 is attributed to the reduced abundance of bats at the study site during a drought caused by El Niño. I hypothesize that interaction among several factors, including tetraploidy, autogamy, larval infestation of developing fruits, and variation in pollinator abundance, may not result in strong selection for a bat vs. hummingbird floral morph, thus allowing the persistence of floral variation in this cactus.  相似文献   

17.
Nathan Muchhala 《Biotropica》2008,40(3):332-337
What causes flowers to diverge? While a plant's primary pollinator should strongly influence floral phenotype, selective pressures may also be exerted by other flower visitors or competition with other plants for pollination. Species of the primarily bat‐pollinated genus Burmeistera (Campanulaceae) frequently cooccur, with up to four species in a given site, and broadly overlap in flowering phenology, typically flowering throughout the year. The genus displays extensive interspecific variation in floral morphology in the degree that the reproductive parts (anthers and stigma) are exserted outside of the corolla, and species can be roughly classified as either long or short‐exserted. I tested two hypotheses regarding the functional significance of such variation: (1) exsertion lengths correspond to pollination by bat species of different sizes; and (2) variation serves to partition pollinator's bodies spatially and thus reduces interspecific pollen transfer. I captured bats in Ecuador to evaluate the identity and location of the Burmeistera pollen they were carrying. Results show that exsertion does not correspond to specialization on different pollinators; different bat species carried pollen of both flower types just as frequently. In support of the second hypothesis, pollen from flowers of different exsertion lengths was found to occur on different regions of bats' heads. This may serve to reduce competition for pollination among coexisting Burmeistera.  相似文献   

18.
Species interactions are one dimension of a niche. Niche overlap arises when two species share an interaction partner. In pollination systems, environmental and biotic factors affect niche overlap. Here, we explored the effects of climate seasonality, plant and bat richness, morphological traits, and phylogenetic distance in shaping the niche overlap of Neotropical bat–plant pollination networks. We examined a dataset of 22 bat–plant pollination networks in the Neotropical region. We measured niche overlap in bats and plants with the Morisita-Horn index (ĈH) and used a SAR model to test the relationships between niche overlap and both abiotic and biotic factors. We found a lower niche overlap among bats in communities composed of phylogenetically distant bat species. Moreover, plant and bat overlap was lower in regions with higher precipitation seasonality. Our results indicate that climate seasonality and bat evolutionary history drive niche overlap in Neotropical bat–plant pollination interactions. These findings suggest that a higher precipitation seasonality promotes the emergence of temporal modules, which reduces niche overlap, likely due to seasonal species phenologies. Furthermore, the method used to record the interactions affects the degree of niche overlap. Interactions recorded with pollen samples tend to have higher niche overlap than direct observations. The responses of morphological traits and phylogenetic distances in bat niche overlap were uncoupled, suggesting an effect of historical processes independent of morphological traits. Our findings reinforce the importance of evolutionary history and ecological processes in imprinting patterns of interaction niche overlap.  相似文献   

19.
Nectar intake and energy expenditure in a flower visiting bat   总被引:3,自引:0,他引:3  
Summary In a coastal region of Venezuela the daily energy expenditure (DEE) and water turnover of the flower visiting bat Anoura caudifer was measured by using the doubly labeled water method. In flower visitors, this method allows independent measurement of energy intake and expenditure if the animals drink no additional water and if the nectar's energy content is known. An average DEE of 12.4 kcal/d and water exchange of 13.4 ml/d were found. Our data show a balanced energy budget when animals in the field imbibe nectar with a sugar concentration of 18–21%, which is roughly medial in the range of nectar concentrations of various bat flowers. The energy turnover of flower visiting bats is high compared with DEEs of other bat species, small mammals and birds; flower visiting bats seem to belong to those species having a fast spin of the life motor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号