共查询到8条相似文献,搜索用时 0 毫秒
1.
Models and empirical studies of coevolution assume host resistance and parasite infectivity are genetically based. However, nongenetic physiological or environmental influences could alter host susceptibility even when the relationship is genetically based. In this experiment we examined the influence of host genotype, host condition at the time of infection (age and reproductive status), and their interaction on resistance of the freshwater snail Potamopyrgus antipodarum) to its dominant trematode parasite (Microphallus sp.). We used a laboratory infection experiment of a clonal snail population to determine the susceptibility of juveniles, brooding adult females, and nonbrooding adult females. We found a significant effect of both life-history state and clonal genotype on the prevalence of infection. However, the relative susceptibility of different clonal genotypes was not altered by condition; genotypes that were rare in the natural population were less infected than those that were common for each life-history state. These results suggest that although host condition affects susceptibility, it does not disrupt the specificity of the match between parasites and common clonal genotypes. Hence these findings support the Red Queen hypothesis for the maintenance of sex under genetically based host-parasite interactions. 相似文献
2.
King KC Jokela J Lively CM 《Evolution; international journal of organic evolution》2011,65(5):1474-1481
Under the Red Queen hypothesis, host-parasite coevolution selects against common host genotypes. Although this mechanism might underlie the persistence of sexual reproduction, it might also maintain high clonal diversity. Alternatively, clonal diversity might be maintained by multiple origins of parthenogens from conspecific sexuals, a feature in many animal groups. Herein, we addressed the maintenance of overall genetic diversity by coevolving parasites, as predicted by the Red Queen hypothesis. We specifically examined the contribution of parasites to host clonal diversity and the frequency of sexually reproducing individuals in natural stream populations of Potamopyrgus antipodarum snails. We also tested the alternative hypothesis that clonal diversity is maintained by the input of clones by mutation from sympatric sexuals. Clonal diversity and the frequency of sexual individuals were both positively related to infection frequency. Surprisingly, although clones are derived by mutation from sexual snails, parasites explained more of the genotypic variation among parthenogenetic subpopulations. Our findings thus highlight the importance of parasites as drivers of clonal diversity, as well as sex. 相似文献
3.
Samuel P. Slowinski Levi T. Morran Raymond C. Parrish II Eric R. Cui Amrita Bhattacharya Curtis M. Lively Patrick C. Phillips 《Evolution; international journal of organic evolution》2016,70(11):2632-2639
Given the cost of sex, outcrossing populations should be susceptible to invasion and replacement by self‐fertilization or parthenogenesis. However, biparental sex is common in nature, suggesting that cross‐fertilization has substantial short‐term benefits. The Red Queen hypothesis (RQH) suggests that coevolution with parasites can generate persistent selection favoring both recombination and outcrossing in host populations. We tested the prediction that coevolving parasites can constrain the spread of self‐fertilization relative to outcrossing. We introduced wild‐type Caenorhabditis elegans hermaphrodites, capable of both self‐fertilization, and outcrossing, into C. elegans populations that were fixed for a mutant allele conferring obligate outcrossing. Replicate C. elegans populations were exposed to the parasite Serratia marcescens for 33 generations under three treatments: a control (avirulent) parasite treatment, a fixed (nonevolving) parasite treatment, and a copassaged (potentially coevolving) parasite treatment. Self‐fertilization rapidly invaded C. elegans host populations in the control and the fixed‐parasite treatments, but remained rare throughout the entire experiment in the copassaged treatment. Further, the frequency of the wild‐type allele (which permits selfing) was strongly positively correlated with the frequency of self‐fertilization across host populations at the end of the experiment. Hence, consistent with the RQH, coevolving parasites can limit the spread of self‐fertilization in outcrossing populations. 相似文献
4.
C. M. LIVELY 《Journal of evolutionary biology》2009,22(10):2086-2093
Why don’t asexual females replace sexual females in most natural populations of eukaryotes? One promising explanation is that parasites could counter the reproductive advantages of asexual reproduction by exerting frequency‐dependent selection against common clones (the Red Queen hypothesis). One apparent limitation of the Red Queen theory, however, is that parasites would seem to be required by theory to be highly virulent. In the present study, I present a population‐dynamic view of competition between sexual females and asexual females that interact with co‐evolving parasites. The results show that asexual populations have higher carrying capacities, and more unstable population dynamics, than sexual populations. The results also suggest that the spread of a clone into a sexual population could increase the effective parasite virulence as population density increases. This combination of parasite‐mediated frequency‐dependent selection, and density‐dependent virulence, could lead to the coexistence of sexual and asexual reproductive strategies and the long‐term persistence of sex. 相似文献
5.
D. Paczesniak S. Adolfsson K. Liljeroos K. Klappert C. M. Lively J. Jokela 《Journal of evolutionary biology》2014,27(2):417-428
According to the Red Queen hypothesis for sex, parasite‐mediated selection against common clones counterbalances the reproductive advantage of asexual lineages, which would otherwise outcompete sexual conspecifics. Such selection on the clonal population is expected to lead to a faster clonal turnover in habitats where selection by parasites is stronger. We tested this prediction by comparing the genetic structure of clonal and sexual populations of freshwater snail Potamopyrgus antipodarum between years 2003 and 2007 in three depth‐specific habitats in Lake Alexandrina (South Island, New Zealand). These habitats differ in the risk of infection by castrating trematodes and in the relative proportion of sexual individuals. As predicted, we found that the clonal structure changed significantly in shallow and mid‐water habitats, where prevalence of infection was high, but not in the deep habitat, where parasite prevalence was low. Additionally, we found that both clonal diversity and evenness of the asexual population declined in the shallow habitat. In contrast, the genetic structure (based on F–statistics) of the coexisting sexual population did not change, which suggests that the change in the clonal structure cannot be related to genetic changes in the sexual population. Finally, the frequency of sexuals had no effect on the diversity of the sympatric clonal population. Taken together, our results show a more rapid clonal turnover in high‐infection habitats, which gives support for the Red Queen hypothesis for sex. 相似文献
6.
Conor Waldock Rick D. Stuart‐Smith Graham J. Edgar Tomas J. Bird Amanda E. Bates 《Ecology letters》2019,22(4):685-696
Improving predictions of ecological responses to climate change requires understanding how local abundance relates to temperature gradients, yet many factors influence local abundance in wild populations. We evaluated the shape of thermal‐abundance distributions using 98 422 abundance estimates of 702 reef fish species worldwide. We found that curved ceilings in local abundance related to sea temperatures for most species, where local abundance declined from realised thermal ‘optima’ towards warmer and cooler environments. Although generally supporting the abundant‐centre hypothesis, many species also displayed asymmetrical thermal‐abundance distributions. For many tropical species, abundances did not decline at warm distribution edges due to an unavailability of warmer environments at the equator. Habitat transitions from coral to macroalgal dominance in subtropical zones also influenced abundance distribution shapes. By quantifying the factors constraining species’ abundance, we provide an important empirical basis for improving predictions of community re‐structuring in a warmer world. 相似文献
7.
Y. Zhu S. A. Queenborough R. Condit S. P. Hubbell K. P. Ma L. S. Comita 《Ecology letters》2018,21(4):506-515
Species coexistence in diverse communities likely results from multiple interacting factors. Mechanisms such as conspecific negative density dependence (CNDD) and varying life‐history strategies related to resource partitioning are known to influence plant fitness, and thereby community composition and diversity. However, we have little understanding of how these mechanisms interact and how they vary across life stages. Here, we document the interaction between CNDD and life‐history strategy, based on growth‐mortality trade‐offs, from seedling to adult tree for 47 species in a tropical forest. Species’ life‐history strategies remained consistent across stages: fast‐growing species had higher mortality than slow‐growing species at all stages. In contrast, mean CNDD was strongest at early life stages (i.e. seedling, sapling). Fast‐growing species tended to suffer greater CNDD than slow‐growing species at several, but not all life stages. Overall, our results demonstrate that coexistence mechanisms interact across multiple life stages to shape diverse tree communities. 相似文献
8.
Kazutaka Kawatsu 《Ecology and evolution》2015,5(22):5432-5440
The RQH (Red Queen hypothesis), which argues that hosts need to be continuously finding new ways to avoid parasites that are able to infect common host genotypes, has been at the center of discussions on the maintenance of sex. This is because diversity is favored under the host–parasite coevolution based on negative frequency‐dependent selection, and sexual reproduction is a mechanism that generates genetic diversity in the host population. Together with parasite infections, sexual organisms are usually under sexual selection, which leads to mating skew or mating success biased toward males with a particular phenotype. Thus, strong mating skew would affect genetic variance in a population and should affect the benefit of the RQH. However, most models have investigated the RQH under a random mating system and not under mating skew. In this study, I show that sexual selection and the resultant mating skew may increase parasite load in the hosts. An IBM (individual‐based model), which included host–parasite interactions and sexual selection among hosts, demonstrates that mating skew influenced parasite infection in the hosts under various conditions. Moreover, the IBM showed that the mating skew evolves easily in cases of male–male competition and female mate choice, even though it imposes an increased risk of parasite infection on the hosts. These findings indicated that whether the RQH favored sexual reproduction depended on the condition of mating skew. That is, consideration of the host mating system would provide further understanding of conditions in which the RQH favors sexual reproduction in real organisms. 相似文献