共查询到11条相似文献,搜索用时 5 毫秒
1.
Seed Predation by Rodents and Implications for Plant Recruitment in Defaunated Atlantic Forests 下载免费PDF全文
Mauro Galetti Roger Guevara Lígia A. Galbiati Carolina L. Neves Raisa R. Rodarte Calebe P. Mendes 《Biotropica》2015,47(5):521-525
Rodents are known to perform post‐dispersal seed predation in tropical rain forest, but there is little information on the identity of these seed predators and how they select their seeds. Using cafeteria experiments, we found that seed mass, rodent body mass, and the ratio of seed/rodent mass were determinants of seed consumption. 相似文献
2.
Post‐dispersal seed predation and endozoochorous seed dispersal are two antagonistic processes in relation to plant recruitment, but rely on similar preconditions such as feeding behavior of seed consumers and seed traits. In agricultural landscapes, rodents are considered important seed predators, thereby potentially providing regulating ecosystem services in terms of biological weed control. However, their potential to disperse seeds endozoochorously is largely unknown. We exposed seeds of arable plant species with different seed traits (seed weight, nutrient content) and different Red List status in an experimental rye field and assessed seed removal by rodents. In a complementary laboratory experiment, consumption rates, feeding preferences, and potential endozoochory by two vole species (Microtus arvalis and Myodes glareolus) were tested. Seed consumption by rodents after 24 h was 35% in the field and 90% in the laboratory. Both vole species preferred nutrient‐rich over nutrient‐poor seeds and M. glareolus further preferred light over heavy seeds and seeds of common over those of endangered plants. Endozoochory by voles could be neglected for all tested plant species as no seeds germinated, and only few intact seeds could be retrieved from feces. Synthesis and applications. Our results suggest that voles can provide regulating services in agricultural landscapes by depleting the seed shadow of weeds, rather than facilitating plant recruitment by endozoochory. In the laboratory, endangered arable plants were less preferred by voles than noxious weeds, and thus, our results provide implications for seed choice in restoration approaches. However, other factors such as seed and predator densities need to be taken into account to reliably predict the impact of rodents on the seed fate of arable plants. 相似文献
3.
1. The selection of an oviposition site by a phytophagous insect can depend on many factors, including the risk of predation. Many species avoid predators by laying eggs where enemies searching host plants are unlikely to find them. 2. Females of the Peruvian butterfly, Oleria onega Hewitson (Lepidoptera: Nymphalidae: Danainae: Ithomiini) lay most of their eggs (76 ± 9%) off the host plant, Solanum mite Ruiz & Pav. These off‐host eggs may be laid up to 0.5 m from the nearest host‐plant individual, on twigs or leaf litter, as well as on living plants of species unsuitable for larval food. 3. Disappearance of eggs on and off the host plant was recorded by transferring eggs laid in captivity to known locations in the wild and recording rates of disappearance before the larvae emerged. After 2 days, eggs on the host were significantly more likely to have disappeared compared to eggs laid elsewhere. 4. We conclude that a high risk of predation is a likely trigger that caused O. onega to evolve a behaviour of laying eggs off its host plant. 相似文献
4.
5.
John D. Styrsky 《Ecology and evolution》2014,4(3):276-283
Exploiters of protection mutualisms are assumed to represent an important threat for the stability of those mutualisms, but empirical evidence for the commonness or relevance of exploiters is limited. Here, I describe results from a manipulative study showing that an orb‐weaver spider, Eustala oblonga, inhabits an ant‐acacia for protection from predators. This spider is unique in the orb‐weaver family in that it associates closely with both a specific host plant and ants. I tested the protective effect of acacia ants on E. oblonga by comparing spider abundance over time on acacias with ants and on acacias from which entire ant colonies were experimentally removed. Both juvenile and adult spider abundance significantly decreased over time on acacias without ants. Concomitantly, the combined abundance of potential spider predators increased over time on acacias without ants. These results suggest that ant protection of the ant‐acacia Acacia melanocerus also protects the spiders, thus supporting the hypothesis that E. oblonga exploits the ant–acacia mutualism for enemy‐free space. Although E. oblonga takes advantage of the protection services of ants, it likely exacts little to no cost and should not threaten the stability of the ant–acacia mutualism. Indeed, the potential threat of exploiter species to protection mutualisms in general may be limited to species that exploit the material rewards traded in such mutualisms rather than the protection services. 相似文献
6.
Wise flies: a pre‐dispersal seed predator prefers hermaphrodites over females in the gynodioecious Polemonium foliosissimum 下载免费PDF全文
1. Oviposition choices can profoundly affect offspring performance. Oviposition decisions of the dipteran pre‐dispersal seed predator, Hylemya sp. (Diptera: Anthomyiidae), when choosing among sex morphs of their host‐plant—Polemonium foliosissimum Hook—were evaluated. Polemonium foliosissimum is gynodioecious, with female and hermaphrodite sex morphs that differ in flower size. 2. It was asked: Do female flies preferentially oviposit on hermaphrodite plants and, if so, are oviposition choices correlated with flower size? Is larval survivorship higher on hermaphrodite plants and, if so, is larval success correlated with flower size? Can the differences in oviposition and/or larval success be explained by slight differences in flowering phenology between the sexes? 3. Hermaphrodite flowers received 45% more Hylemya eggs than females. Although hermaphrodites had larger petals and sepals than females, egg loads were not correlated with petal or sepal size. Larval survival was 30% greater on hermaphrodites than females and higher on plants with larger sepals. However, the difference in sepal area between genders did not fully explain larval survival differences. Egg numbers declined over weeks, but differences in egg loads between the sex morphs were not attributable to a slight phenological delay of females. Larval survival declined over the season; however, larval survival differences between sex morphs were consistent. 4. Hylemya preferentially oviposited on hermaphrodites where their larvae had a significantly greater survival rate compared with females. The present results add to the knowledge that intra‐specific choices have consequences for phytophagous insects and that the relationship between antagonists and their gynodioecious host plants is complex. 相似文献
7.
8.
Sofia Gripenberg Yves Basset Owen T. Lewis J. Christopher D. Terry S. Joseph Wright Indira Simn D. Catalina Fernndez Marjorie Cedeo‐Sanchez Marleny Rivera Hctor Barrios John W. Brown Osvaldo Caldern Anthony I. Cognato Jorma Kim Scott E. Miller Geoffrey E. Morse Sara Pinzn‐Navarro Donald L. J. Quicke Robert K. Robbins Juha‐Pekka Salminen Eero Vesterinen 《Ecology letters》2019,22(10):1638-1649
The top‐down and indirect effects of insects on plant communities depend on patterns of host use, which are often poorly documented, particularly in species‐rich tropical forests. At Barro Colorado Island, Panama, we compiled the first food web quantifying trophic interactions between the majority of co‐occurring woody plant species and their internally feeding insect seed predators. Our study is based on more than 200 000 fruits representing 478 plant species, associated with 369 insect species. Insect host‐specificity was remarkably high: only 20% of seed predator species were associated with more than one plant species, while each tree species experienced seed predation from a median of two insect species. Phylogeny, but not plant traits, explained patterns of seed predator attack. These data suggest that seed predators are unlikely to mediate indirect interactions such as apparent competition between plant species, but are consistent with their proposed contribution to maintaining plant diversity via the Janzen–Connell mechanism. 相似文献
9.
Size selection by a gape‐limited predator of a marine snail: Insights into magic traits for speciation 下载免费PDF全文
Elizabeth G. Boulding María José Rivas Nerea González‐Lavín Emilio Rolán‐Alvarez Juan Galindo 《Ecology and evolution》2017,7(2):674-688
The intertidal snail Littorina saxatilis has repeatedly evolved two parallel ecotypes assumed to be wave adapted and predatory shore crab adapted, but the magnitude and targets of predator‐driven selection are unknown. In Spain, a small, wave ecotype with a large aperture from the lower shore and a large, thick‐shelled crab ecotype from the upper shore meet in the mid‐shore and show partial size‐assortative mating. We performed complementary field tethering and laboratory predation experiments; the first set compared the survival of two different size‐classes of the crab ecotype while the second compared the same size‐class of the two ecotypes. In the first set, the large size‐class of the crab ecotype survived significantly better than the small size‐class both on the upper shore and in the laboratory. In the second set, the small size‐class of the crab ecotype survived substantially better than that of the wave ecotype both on the upper shore and in the laboratory. Shell‐breaking predation on tethered snails was almost absent within the lower shore. In the laboratory shore crabs (Pachygrapsus marmoratus) with larger claw heights selected most strongly against the small size‐class of the crab ecotype, whereas those with medium claw heights selected most strongly against the thin‐shelled wave ecotype. Sexual maturity occurred at a much larger size in the crab ecotype than in the wave ecotype. Our results showed that selection on the upper shore for rapid attainment of a size refuge from this gape‐limited predator favors large size, thick shells, and late maturity. Model parameterization showed that size‐selective predation restricted to the upper shore resulted in the evolution of the crab ecotype despite gene flow from the wave ecotype snails living on the lower shore. These results on gape‐limited predation and previous ones showing size‐assortative mating between ecotypes suggest that size may represent a magic trait for the thick‐shelled ecotype. 相似文献
10.
R. Álvarez‐Espino L. Ríos‐Casanova H. Godínez‐Álvarez 《Plant biology (Stuttgart, Germany)》2017,19(3):469-474
- To determine seed removal influence on seed populations, we need to quantify pre‐ and post‐dispersal seed removal. Several studies have quantified seed removal in temperate American deserts, but few studies have been performed in tropical deserts. These studies have only quantified pre‐ or post‐dispersal seed removal, thus underestimating the influence of seed removal. We evaluated pre‐ and post‐dispersal seed removal in the columnar cactus Stenocereus stellatus in a Mexican tropical desert.
- We performed selective exclosure experiments to estimate percentage of seeds removed by ants, birds and rodents during the pre‐ and post‐dispersal phases. We also conducted field samplings to estimate abundance of the most common seed removers.
- Birds (10–28%) removed a higher percentage of seeds than ants (2%) and rodents (1–4%) during pre‐dispersal seed removal. Melanerpes hypopolius was probably the main bird removing seeds from fruits. Ants (62–64%) removed a higher percentage of seeds than birds (34–38%) and rodents (16–30%) during post‐dispersal seed removal. Pogonomyrmex barbatus was probably the main ant removing seeds from soil.
- Birds and ants are the main pre‐ and post‐dispersal seed removers in S. stellatus, respectively. Further studies in other S. stellatus populations and plants with different life forms and fruit types will contribute to evaluate seed removal in tropical American deserts.
11.
Jens Kvist Nielsen 《Entomologia Experimentalis et Applicata》2012,143(3):301-312
The flea beetle, Phyllotreta nemorum (L.) (Coleoptera: Chrysomelidae: Alticinae), is currently expanding its host plant range in Europe. The ability to utilize a novel host plant, Barbarea vulgaris R. Br. (Brassicaceae), is controlled by major dominant genes named R‐genes. The present study used extensive crossing experiments to illustrate a peculiar mode of inheritance of the R‐gene in a population from Delemont (Switzerland). When resistant males from Delemont are mated with recessive females from a laboratory line, the female F1 offspring contains the R‐allele and is able to utilize B. vulgaris, whereas the male offspring contains the r‐allele and is unable to utilize the plant. This outcome suggests X‐linkage of the R‐gene, but further crossing experiments demonstrated that this was not the case. When the R‐gene is present in offspring from males from a laboratory line that originates from Taastrup (Denmark), it is transmitted to female and male offspring in equal proportions as a normal autosomal gene. The results demonstrate a polymorphism in segregation patterns of an autosomal R‐gene in P. nemorum males. Males from Delemont contain a factor which causes non‐random segregation of the R‐gene (NRS‐factor). This factor is inherited patrilineally (from fathers to sons). Males with the NRS‐factor transmit the R‐gene to their female offspring, whereas males without the NRS‐factor transmit the R‐gene to female and male offspring in equal proportions. Various models for the non‐random segregation of autosomes in P. nemorum males are discussed – e.g., fusions between autosomes and sex chromosomes, and genomic imprinting. The implications of various modes of inheritance of R‐genes for the ability of P. nemorum populations to colonize novel patches of B. vulgaris are discussed. 相似文献