共查询到20条相似文献,搜索用时 15 毫秒
1.
Duncan J. Irschick Neil Hammerschlag 《Biological journal of the Linnean Society. Linnean Society of London》2015,114(1):126-135
Body form can change across ontogeny, and can influence how animals of different sizes move and feed. Scaling data on live apex predatory sharks are rare and, therefore, we examined patterns of scaling in ontogenetic series of four sympatric shark species exhibiting a range of sizes, ecologies and life histories (tiger, bull, blacktip, and nurse shark). We evaluated 13 linear morphological variables and two areas (caudal and dorsal) that could influence both animal condition and locomotor performance. These measurements included dimensions of the dorsal, pectoral, and caudal fins, as well as several dimensions of body circumference, and of the head. For all four species, the body axis (eye‐to‐eye, lateral span, frontal span, proximal span) scaled close to isometry (expected slope of 1.0). The two largest sharks (tiger and bull sharks) also showed significant negative allometry for elements of the caudal fin. We found significant negative allometry in the lengths of the upper lobe of the caudal fin (caudal fin 1) and the overall height of the caudal fin (caudal fin 2) in tiger and bull sharks, with slopes ranging from about 0.60 to 0.73. Further, tiger sharks showed negative allometry in caudal fin area. These results suggest that in terms of overall body dimensions, small sharks are roughly geometrically similar to large sharks, at least within the species we examined. However, juvenile tiger (and to a lesser extent bull sharks) are notable in having proportionately larger caudal fins compared to adult sharks. As the caudal fin contributes to generating thrust during forward locomotion, this scaling implies differences among adult and juvenile sharks in locomotor ability. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 126–135. 相似文献
2.
Vanessa K Hilliard Young Juan Antonio Baeza Richard W. Blob 《Journal of morphology》2019,280(4):593-603
Several terrestrial vertebrate clades include lineages that have evolved nearly exclusive use of aquatic habitats. In many cases, such transitions are associated with the evolution of flattened limbs that are used to swim via dorsoventral flapping. Such changes in shape may have been facilitated by changes in limb bone loading in novel aquatic environments. Studies on limb bone loading in turtles found that torsion is high relative to bending loads on land, but reduced compared to bending during aquatic rowing. Release from torsion among rowers could have facilitated the evolution of hydrodynamically advantageous flattened limbs among aquatic species. Because rowing is regarded as an intermediate locomotor stage between walking and flapping, rowing species might show limb bone flattening intermediate between the tubular shapes of walkers and the flattened shapes of flappers. We collected measurements of humeri and femora from specimens representing four functionally divergent turtle clades: sea turtles (marine flappers), softshells (specialized freshwater rowers), emydids (generalist semiaquatic rowers), and tortoises (terrestrial walkers). Patterns of limb bone scaling with size were compared across lineages using phylogenetic comparative methods. Although rowing taxa did not show the intermediate scaling patterns we predicted, our data provide other functional insights. For example, flattening of sea turtle humeri was associated with positive allometry (relative to body mass) for the limb bone diameter perpendicular to the flexion-extension plane of the elbow. Moreover, softshell limb bones exhibit positive allometry of femoral diameters relative to body mass, potentially helping them maintain their typical benthic position in water by providing additional weight to compensate for shell reduction. Tortoise limb bones showed positive allometry of diameters, as well as long humeri, relative to body mass, potentially reflecting specializations for resisting loads associated with digging. Overall, scaling patterns of many turtle lineages appear to correlate with distinctive behaviors or locomotor habits. 相似文献
3.
4.
5.
6.
MARCOS DARÍO ERCOLI FRANCISCO JUAN PREVOSTI ALICIA ÁLVAREZ 《Zoological Journal of the Linnean Society》2012,165(1):224-251
In this study, we analysed locomotory habits in extant predators and Sparassodonta species through geometric morphometric techniques and discriminant analyses of the distal humerus in anterior view, proximal ulna in lateral view, and tibia in proximal view. We included a wide sample of extant predators, and considered the phylogenetic and allometric structure in the data sets. We also included some Sparassodonta, a group of carnivorous metatherians that inhabited South America during the Cenozoic, and inferred their locomotory habits. Results suggest the presence of a close relationship between shape and locomotory habits, even after removing the shape component explained by phylogeny in the three postcranial elements. Terrestrial habits were inferred for Arctodictis sinclairi, Borhyaena tuberata, ‘Lycopsis’ longirostrus, and Thylacosmilus atrox. Some degree of cursoriality was highlighted in B. tuberata and T. atrox, and climbing abilities in ‘L.’ longirostrus, and to a lesser degree in B. tuberata. Scansorial habits were inferred for Cladosictis patagonica, Sipalocyon gracilis, Prothylacynus patagonicus, and Pseudonotictis pusillus, and in the case of C. patagonica, some digging ability was also tentatively inferred. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 224–251. 相似文献
7.
8.
Different types of locomotion in phylogenetically close rodent species can lead to significantly different growth patterns of certain skeletal structures. In the present study, we compared the allometric and phenotypic trajectories of the humerus in semiaquatic (Arvicola sapidus) and fossorial (Arvicola scherman) water vole taxa, using three-dimensional geometric morphometrics, to investigate the relationships between functional and ontogenetic differences. Results revealed shared humerus traits between A. sapidus and A. scherman, specifically an expansion of the epicondylar and deltopectoral crests along postnatal ontogeny. In both species, the humerus of young specimens is more robust than in adults, possibly as a compensatory response for lower bone stiffness. However, significant interspecific differences were detected in all components of allometric and phenotypic trajectories. Noticeably divergent allometric trajectories were observed, probably as a result of different functional pressures exerted on this bone. Important differences in the form of the adult humerus between taxa were also found, particularly in features located in muscle insertion zones. Furthermore, the allometric regression revealed certain shape variation not associated with size in A. scherman, suggesting mechanical stress produced by the persistent digging activity during adulthood. A. scherman is a chisel-tooth digger that shares several traits in the humerus morphology with scratch-digger rodent species. Nevertheless, these shared characteristics are less pronounced in fossorial water voles, which is congruent with the different implications of the forelimb in the digging activity in these two types of diggers. 相似文献
9.
Many fish species transform in body shape during growth, but it remains unclear how this influences the mechanics of locomotion. Therefore, the present study focused on understanding how drag generation during coasting is affected by ontogenetic changes in the morphology of zebrafish (Danio rerio). The shapes of the body and fins were measured from photographs of fish ranging in size from small larvae to mature adults and these morphometrics were compared to drag coefficients calculated from high-speed video recordings of routine swimming. We found that the viscous drag coefficient of larval and juvenile fish increased by more than an order of magnitude during growth and the inertial drag coefficient decreased at a comparable rate in adults. These hydrodynamic changes occurred as zebrafish disproportionately increased the span of their fins and their body changed shape from elongated to streamlined, as reflected by the logistic growth of a newly defined streamlining index, SL. These results suggest that morphological changes incur a performance cost by generating greater drag when larvae and juveniles operate in the viscous regime, but later provide a performance benefit by reducing pressure drag in the inertial regime of the adult stage. 相似文献
10.
Anthony Walmsley Sarah Elton Julien Louys Laura C. Bishop Carlo Meloro 《Journal of morphology》2012,273(12):1424-1438
Bone morphology of the cats (Mammalia: Felidae) is influenced by many factors, including locomotor mode, body size, hunting methods, prey size and phylogeny. Here, we investigate the shape of the proximal and distal humeral epiphyses in extant species of the felids, based on two‐dimensional landmark configurations. Geometric morphometric techniques were used to describe shape differences in the context of phylogeny, allometry and locomotion. The influence of these factors on epiphyseal shape was assessed using Principal Component Analysis, Linear Discriminant functions and multivariate regression. Phylogenetic Generalised Least Squares was used to examine the association between size or locomotion and humeral epiphyseal shape, after taking a phylogenetic error term into account. Results show marked differences in epiphyseal shape between felid lineages, with a relatively large phylogenetic influence. Additionally, the adaptive influences of size and locomotion are demonstrated, and their influence is independent of phylogeny in most, but not all, cases. Several features of epiphyseal shape are common to the largest terrestrial felids, including a relative reduction in the surface area of the humeral head and increased robusticity of structures that provide attachment for joint‐stabilising muscles, including the medial epicondyle and the greater and lesser tubercles. This increased robusticity is a functional response to the increased loading forces placed on the joints due to large body mass. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc. 相似文献
11.
12.
SANDRA NAUWELAERTS JAN SCHOLLIERS PETER AERTS 《Biological journal of the Linnean Society. Linnean Society of London》2004,83(3):413-420
Euphlyctis cyanophlyctis and E. hexadactylus are two common frog species from south-east Asia. Both species have the remarkable ability to leap from a floating position out of the water. Rana esculenta is a European species from the same family that barely manages to do so. The species' morphology, however, looks roughly the same. We studied the unique abilities of the Euphlyctis species by videotaping the three species mentioned above whilst they jumped out of the water. These recordings enabled us to study the hind leg movements and to test several hypotheses. Differences between the species only became apparent when details of the behaviour were analysed. The three species mainly differed in their slip factor at the start of the propulsive phase, resulting in a difference in slip distance. This difference could be traced back to the difference in web shape by means of a physical model. The Euphlyctis species can prevent their feet from slipping because of their rounded and convex webbing, resulting in a larger take-off velocity and thereby a successful emergence out of the water. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 413–420. 相似文献
13.
Kenneth Carpenter 《Ichnos》2013,20(3):202-207
Locomotion in the alligatorids Caiman and Alligator show ontogenetic changes in gait width, manus orientation, and the amount of lateral body movement. In addition, the trackway of an adult Caiman is narrower than predicted for a semierect position of the limbs based on stance. The narrowness of the Caiman trackway is due to lateral movement of the body during locomotion. This movement allows placement of the feet closer to the trackway midline than would occur if no lateral bending occurred. Lateral movement is widespread among limbed tetrapods, yet little consideration has been given to its effects in trackmaking. Inferring stance from fossil trackways must take into account lateral body movement, otherwise the resultant hypothesis will be flawed. 相似文献
14.
15.
Movement is central to the survival of all free‐living organisms. Consequently, movement and what anthropologists often refer to as mobility, which is the sum of small‐scale movements tracked across larger geographic and temporal scales, are key targets of selection. Movement and mobility also underpin many of the key features that make us human and that allowed our lineage to adapt to changing environments across the globe. The most obvious example is the evolution of humans' singular mode of locomotion. Bipedalism is arguably the most important derived anatomical trait of the hominin lineage. The mechanisms and circumstances that gave rise to this novel mode of movement remain subjects of intense research. 相似文献
16.
In several groups of mammals, adaptation to differing functional demands is reflected in long bone cross-sectional properties (CSP), which relate to the resistance to compression and to bending loads in the craniocaudal and mediolateral directions. Members of the Sciuromorpha (“squirrel-like” rodents) display a diversity of locomotor ecologies and span three orders of magnitude in terms of body size. The availability of robust phylogenies is rendering them a suitable group to further substantiate the relationship of long bone CSP with locomotor ecology and body mass while taking the phylogenetic non-independence among species into account. Here, we studied 69 species of Sciuromorpha belonging to three lifestyle categories, “arboreal,” “fossorial,” and “aerial” (i.e., gliding). We hypothesized locomotor category specific loading regimes that act on femora during predominant or, in terms of gliding, critical locomotor behaviors of each category. High resolution computed tomography scans of the specimens' femora were obtained and cross-sections in 5% increments were analyzed. Cross-sectional area, the craniocaudal second moment of area (SMAcc), and the mediolateral second moment of area were quantified. Further, a scaling analysis was conducted for each bone cross-section to examine how the CSP scale with body mass. Body mass accounted for variances in CSP with mainly positive allometry. The aerial sciuromorphs showed lower values of CSP compared to the arboreal and fossorial species in the distal epiphysis for all quantified parameters and along the bone for SMAcc. In contrast to previous studies on other mammalian lineages, no differences in CSP were found between the fossorial and the arboreal lifestyles. 相似文献
17.
GARY D. ROSENBERG W. WILLIAM HUGHES RICHARD D. TKACHUCK 《Lethaia: An International Journal of Palaeontology and Stratigraphy》1988,21(3):219-230
Juvenile Terebratalia transversa (Brachiopoda) metabolize carbohydrates in the anterior-most marginal mantle at a rate of 0.46 μM glucose/g/hr (in vitro incubation of mantle in C14-glucose in a carrying medium of 10-3 M non-radioactive glucose). The rate declines to 0.18μM glucose/g/hr in full-grown specimens. Carbohydrate metabolism in the marginal (anterior-most) mantle averages approximately 3.7 times greater than metabolism in (a portion of the ‘posterior’) mantle situated between the coelomic canals and the marginal mantle. This ratio remains constant in specimens of all sizes (i.e. an ontogenetic trend in the ratio is absent at p≤ 0.05). Organic acids are not detectable within the mantle (HPLC techniques) even after simulated anoxia (N2 bubbling during mantle incubation). Glucose metabolism in vitro declines in both the marginal and ‘posterior’ mantles during anoxia and the metabolic ratio between marginal/‘posterior’ mantles becomes 1/1. We found no difference (at p≤ 0.05) in mean metabolic activity or in sue-related metabolic trends among populations from depths ranging between mean sea level and 70 m. However, the activity within the ‘posterior’ mantle was more variable in specimens from 70 m than in those from shallower habitats (10 m - mean sea level). The size of the specimens analyzed was most variable in the groups obtained from the shallowest habitats and least variable at 70 m depth. Our results may help define the energetics of fossil as well as living brachiopod shell growth. Brachiopod shell growth is known to be very slow relative to that of bivalves and our results indicate that this is a result of the animals' slow metabolism. The inflation of the valves in T. transversa is, in part, a function of the high ratio of intermediary metabolism in the marginal vs‘posterior’ mantle (i.e. parallels the relative growth rates at the shell margin vs‘posterior’ areas). We found that the bivalve, Chlamys hastata, which is commonly associated with T. transversa, has a lower ratio of metabolic activities in the ventral/dorsal mantle areas than the brachiopod has in the anterior/posterior. The difference produces a flatter shell in the bivalve in accord with allometric principles. The higher metabolic rate in the marginal vs‘posterior’ brachiopod mantle and its more pronounced decline with anaerobiosis is reflected in the greater definition of growth increments in the outer shell layer. Our results do not support recent generalizations that correlate shell thickness of a wide variety of invertebrates inversely with metabolic rate. Growth rate as determined from width of shell growth increments is a better index of metabolic rate. Although the genetic basis of glucose metabolism is unknown, the observed metabolic variability is consistent with suggestions that populations of marine organisms living in stable offshore environments are genetically more variable but morphologically more uniform than populations from shallow water. Furthermore, our results support suggestions that bivalved molluscs and brachiopods are very different metabolically, but the data are neutral with respect to theories of competitive exclusion of the two taxa throughout geologic history. 相似文献
18.
Alexis M. Heckley;Daniel I. Bolnick;Francis Dinh;Andrew P. Hendry;Natalie C. Steinel; 《Ecology and evolution》2024,14(12):e70697
Dispersal can affect individual-level fitness and population-level ecological and evolutionary processes. Factors that affect dispersal could therefore have important eco-evolutionary implications. Here, we investigated the extent to which an inflammation and tissue repair response—peritoneal fibrosis—which is known to restrict movement, could influence dispersal by conducting a mark-recapture experiment in a lake in Alaska with threespine stickleback (Gasterosteus aculatus). A subset of captured stickleback were injected with aluminium phosphate to experimentally induce fibrosis (‘treatment group’), and another subset were injected with saline or received no injection—both of which do not induce fibrosis (‘control group’). We released all fish at one introduction point and re-sampled stickleback throughout the lake for 8 days. We recaptured 123 individuals (n = 47 fibrosis treatment; n = 76 control) and dissected them to determine fibrosis levels. Overall, fibrosis did not affect dispersal. Some compelling (but not statistically significant) trends suggest that early-stage inflammation may affect dispersal, providing opportunities for future work. By showing that effects on dispersal are not important side effects of fibrosis, these findings improve our understanding of the ecological implications of immune responses. 相似文献
19.
Federico Massetti Antigoni Kaliontzopoulou Vernica Gomes Catarina Rato 《Journal of Zoological Systematics and Evolutionary Research》2019,57(2):431-444
Deciphering the mechanisms that underlie morphological and functional diversity is essential for understanding how organisms adapt to their environment. Interestingly, phenotypic divergence does not necessarily correspond to the geographic and genetic separation between populations. Here, we explored the morphological and functional divergence among populations of two genetically differentiated clades of the Moorish gecko, Tarentola mauritanica. We used linear and geometric morphometrics to quantify morphological variation and investigated how it translates into biting and CLIMBING PERFORMANCE, to better understand the mechanisms potentially underlying population and lineage divergence. We found marked morphological differences between clades, both in body size and head shape. However, much of this differentiation is more strongly related to local variation between populations of the same clade, suggesting that recent ecological events may be more influential than deep evolutionary history in shaping diversity patterns in this group. Despite a lack of association between morphology and functional diversification in the locomotor system of the Moorish gecko, straightforward links are observed between head morphology and biting performance, providing more hints on the possible underlying causes. Indeed, variation in bite force is mostly determined by size variation and sexual dimorphism, and differences between the two clades concern how sexual variation is expressed, reinforcing the idea that both social and ecological factors contribute in shaping differentiation. Interestingly, the individuals from the islets off the coast of Murcia exhibit particular morphological and functional traits, which suggests that the ecological conditions related to insularity may drive the phenotypic differentiation of this population. 相似文献
20.
STEVANJ. ARNOLD ALBERT F. BENNETT 《Biological journal of the Linnean Society. Linnean Society of London》1988,34(2):175-190
A series of morphologieal and locomotor performance variables was measured in a population of newborn garter snakes to determine whether performance capacity has a significant morphological basis in these animals. Morphological traits measured were body length and mass, number of body and tail vertebrae and numbers of vertebral abnormalities. Locomotor performances included burst and mid-distance speed and distance and time crawled before anti-predator displays were assumed. All performance variables were repeatable in daily replicate trials ( P < 0.001). Individual burst speed, mid-distance speed, and distance crawled were significantly correlated pairwise ( P < 0.01). Most morphological and performance variables had a significant mass dependence (static allometry), although the effects were rather weak ( r 2 < 0.1, except for body length): larger animals performed better and had fewer abnormalities. There were significant associations between some morphological traits and locomotor performance. Morphological factors accounted for 19% of the variation in mid-distance speed and 14% of the variation in antipredator behavior by multiple regression analysis. Canonical correlation of all performance and morphological variables simultaneously accounted for 24% of the observed variation in performance. Numbers of body and tail vertebrae (assayed by scale counts) had an interactive effect on speed of locomotion. 相似文献