首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tree health is often negatively linked with the localized abundance of parasitic invertebrates. One group, the sap‐sucking psyllid insects (Homoptera: Psyllidae) are well known for their negative impact upon vegetation, an impact that often culminates in the defoliation and even death of hosts. In Australia, psyllid‐infested forest in poor health is also frequently occupied by a native honeyeater, the bell miner (Manorina melanophrys; Meliphagidae), so much so that the phenomenon has been dubbed ‘bell miner‐associated dieback’ (BMAD). Bell miners are thought to be the causative agent behind BMAD, in part because the species may selectively forage only upon the outer covering (lerp) exuded by psyllid nymphs, leaving the insect underneath to continue parasitizing hosts. As bell miners also aggressively exclude all other avian psyllid predators from occupied areas, these behavioural traits may favour increases in psyllid populations. We examined bell miner foraging behaviour to determine if non‐lethal foraging upon psyllid nymphs occurred more often than in a congener, the noisy miner (M. melanocephala; Meliphagidae). This was indeed the case, with bell miners significantly more likely to remove only the lerp covering during feeding, leaving the insect intact underneath. This arose from bell miners using their tongue to pry off the lerp cases, whereas noisy miners used their mandibles to snap at both the lerp and insect underneath. Furthermore, psyllids left behind following a bell miner foraging event were significantly more likely to be viable and regrow a lerp covering than those exposed by noisy miners. Together, this behaviour supports the theory that non‐lethal foraging behaviour of bell miners may contribute to high psyllid abundance, consistent with the mechanisms by which BMAD is thought to develop.  相似文献   

2.
Passive acoustic monitoring is increasingly being used as a cost-effective way to study wildlife populations, especially those that are difficult to census using conventional methods. Burrow-nesting seabirds are among the most threatened birds globally, but they are also one of the most challenging taxa to census, making them prime candidates for research into such automated monitoring platforms. Passive acoustic monitoring has the potential to determine presence/absence or quantify burrow-nesting populations, but its effectiveness remains unclear. We compared passive acoustic monitoring, tape-playbacks and GPS tracking data to investigate the ability of passive acoustic monitoring to capture unbiased estimates of within-colony variation in nest density for the Manx Shearwater Puffinus puffinus. Variation in acoustic activity across 12 study plots on an island colony was examined in relation to burrow density and environmental factors across 2 years. As predicted fewer calls were recorded when wind speed was high, and on moon-lit nights, but there was no correlation between acoustic activity and the density of breeding birds within the plots as determined by tape-playback surveys. Instead, acoustic indices correlated positively with spatial variation in the in-colony flight activity of breeding individuals detected by GPS. Although passive acoustic monitoring has enormous potential in avian conservation, our results highlight the importance of understanding behaviour when using passive acoustic monitoring to estimate density and distribution.  相似文献   

3.
C-PODs are static passive acoustic monitoring devices used to detect odontocete vocalizations in the range of 20–160 kHz. However, falsely classified detections may be an issue, particularly with broadband species (i.e. many dolphin species) due to anthropogenic and other noise occurring at the same frequency. While porpoise detections are verified using species-specific acoustic parameters, the equivalent does not currently exist for verifying dolphin detections. Development of such parameters would increase the accuracy of dolphin detections and eliminate the need for additional monitoring techniques or devices, reducing the cost of monitoring programmes. Herein, we present parameters based on acoustic characteristics of bottlenose (n = 29), common (n = 19) and Risso’s (n = 99) dolphin click trains, sighted within 1 km of C-PODs during land-based surveys, for in-software verification. Overlap of click train parameters among dolphin species prevented robust species identification; therefore, parameters were devised for these dolphin species collectively using frequency, inter-click interval and click train duration. A data set of 4898 Detection Positive Hours was visually verified using these parameters. The temporal and spatial patterns in the visually verified data were similar to land-based observations, suggesting the parameters operate at an acceptable accuracy. However, 68% of high-, moderate- and low-quality KERNO detections were false-positive. Our results suggest that the accuracy of classifiers and quality class weightings are site-specific, and we highlight the importance of data exploration to make the most appropriate software choices based on the aims of a study.  相似文献   

4.
Physiology, physics, and ecological interactions can generate trade‐offs within species, but may also shape divergence among species. We tested whether signal divergence in Oecanthus tree crickets is shaped by acoustic, energetic, and behavioral trade‐offs. We found that species with faster pulse rates, produced by opening and closing wings up to twice as many times per second, did not have higher metabolic costs of calling. The relatively constant energetic cost across species is explained by trade‐offs between the duration and repetition rate of acoustic signals—species with fewer stridulatory teeth closed their wings more frequently such that the number of teeth struck per second of calling and the resulting duty cycle were relatively constant across species. Further trade‐offs were evident in relationships between signals and body size. Calling was relatively inexpensive for small males, permitting them to call for much of the night, but at low amplitude. Large males produced much louder calls, reaching up to four times more area, but the energetic costs increased substantially with increasing size and the time spent calling dropped to only 20% of the night. These trade‐offs indicate that the trait combinations that arise in these species represent a limited subset of conceivable trait combinations.  相似文献   

5.
Mitopus morio is a widespread harvestman species occurring in most of Europe and in moderate and cold‐moderate zones of Asia and North America. The species is characterized by extreme variability in body size and leg length. As leg length is correlated with habitat temperature, M. morio has been considered as an example of Allen's rule. Recently, observations for a single location in Tyrol, Austria, indicated the absence of mating between short‐ and long‐legged individuals. This study examines for signs of putative cryptic species in M. morio using an integrative approach that combines mating trials, amplified fragment length polymorphism whole‐genome scans, mitochondrial sequences and morphometrics. The mating trials did not corroborate the initial hypothesis of a reproductive barrier associated with leg size. Both types of genetic data revealed the existence of three distinct groups, in line with the mating results but largely unrelated to leg morphology and geographical origin of specimens. Morphometric characters supporting the findings of the other disciplines were identified using a supervised approach. We infer from all data together the existence of strongly diverged cryptic lineages among the analysed individuals, cautiously interpret them as three sympatric species and conclude that in these harvestmen Allen's rule applies at different levels. Due to the unexpected amount of differentiation found within a geographical scale very small compared with the distribution of M. morio, we suggest a thorough revision of the genus prior to formal taxonomic changes. Our case study underlines the general applicability of the integrative taxonomic protocol used and highlights the relevance of several rationales implemented in the protocol.  相似文献   

6.
Loss of acoustic habitat due to anthropogenic noise is a key environmental stressor for vocal amphibian species, a taxonomic group that is experiencing global population declines. The Pacific chorus frog (Pseudacris regilla) is the most common vocal species of the Pacific Northwest and can occupy human‐dominated habitat types, including agricultural and urban wetlands. This species is exposed to anthropogenic noise, which can interfere with vocalizations during the breeding season. We hypothesized that Pacific chorus frogs would alter the spatial and temporal structure of their breeding vocalizations in response to road noise, a widespread anthropogenic stressor. We compared Pacific chorus frog call structure and ambient road noise levels along a gradient of road noise exposures in the Willamette Valley, Oregon, USA. We used both passive acoustic monitoring and directional recordings to determine source level (i.e., amplitude or volume), dominant frequency (i.e., pitch), call duration, and call rate of individual frogs and to quantify ambient road noise levels. Pacific chorus frogs were unable to change their vocalizations to compensate for road noise. A model of the active space and time (“spatiotemporal communication”) over which a Pacific chorus frog vocalization could be heard revealed that in high‐noise habitats, spatiotemporal communication was drastically reduced for an individual. This may have implications for the reproductive success of this species, which relies on specific call repertoires to portray relative fitness and attract mates. Using the acoustic call parameters defined by this study (frequency, source level, call rate, and call duration), we developed a simplified model of acoustic communication space–time for this species. This model can be used in combination with models that determine the insertion loss for various acoustic barriers to define the impact of anthropogenic noise on the radius of communication in threatened species. Additionally, this model can be applied to other vocal taxonomic groups provided the necessary acoustic parameters are determined, including the frequency parameters and perception thresholds. Reduction in acoustic habitat by anthropogenic noise may emerge as a compounding environmental stressor for an already sensitive taxonomic group.  相似文献   

7.
Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture‐recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast‐developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics‐based density estimation, illustrated with examples from real‐world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic‐based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture‐recapture. The methods are also applicable to other aquatic and terrestrial sound‐producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds, amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here.  相似文献   

8.
An effective practice for monitoring bird communities is the recognition and identification of their acoustic signals, whether simple, complex, fixed or variable. A method for the passive monitoring of diversity, activity and acoustic phenology of structural species of a bird community in an annual cycle is presented. The method includes the semi-automatic elaboration of a dataset of 22 vocal and instrumental forms of 16 species. To analyze bioacoustic richness, the UMAP algorithm was run on two parallel feature extraction channels. A convolutional neural network was trained using STFT-Mel spectrograms to perform the task of automatic identification of bird species. The predictive performance was evaluated by obtaining a minimum average precision of 0.79, a maximum equal to 1.0 and a mAP equal to 0.97. The model was applied to a huge set of passive recordings made in a network of urban wetlands for one year. The acoustic activity results were synchronized with climatological temperature data and sunlight hours. The results confirm that the proposed method allows for monitoring a taxonomically diverse group of birds that nourish the annual soundscape of an ecosystem, as well as detecting the presence of cryptic species that often go unnoticed.  相似文献   

9.
The inferences that can be made from any study are limited by the quality of the sampling design. By bad luck, when monitoring species that are difficult to detect (cryptic), sampling designs become dictated by what is feasible rather than what is desired. We calibrated and conducted a cost‐benefit analysis of four acoustic recorder options that were being considered as potential solutions to several sampling restrictions experienced while monitoring the Australasian bittern, a cryptic wetland bird. Such sampling restrictions are commonly experienced while monitoring many different endangered species, particularly those that are cryptic. The recorder options included mono and stereo devices, with two sound file processing options (visual and audible analysis). Recording devices provided call‐count data similar to those collected by field observers but at a fraction of the cost, which meant that “idealistic” sampling regimes, previously thought to be too expensive, became feasible for bitterns. Our study is one of the few to assess the monetary value of recording devices in the context of data quality, allowing trade‐offs (and potential solutions) commonly experienced while monitoring cryptic endangered species to be shown and compared more clearly. The ability to overcome challenges of monitoring cryptic species in this way increases research possibilities for data deficient species and is applicable to any species with similar monitoring challenges.  相似文献   

10.
This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements.  相似文献   

11.
The minke whale is one of the most abundant species of baleen whales worldwide, yet is rarely sighted in subtropical waters. In the North Pacific, they produce a distinctive sound known as the “boing,” which can be used to acoustically localize individuals. A vessel‐based survey using both visual and passive acoustic monitoring was conducted during the spring of 2007 in a large (616,000 km2) study area encompassing the Mariana Islands. We applied line transect methods to data collected from a towed hydrophone array to estimate the abundance of calling minke whales in our study area. No minke whales were sighted, but there were hundreds of acoustic detections of boings. Computer algorithms were developed to localize calling minke whales from acoustic recordings, resulting in over 30 independent localizations, a six‐fold increase over those estimated during the survey. The two best estimates of abundance of calling minke whales were determined to be 80 and 91 animals (0.13 and 0.15 animals per 1,000 km2, respectively; CV = 34%). These are the first density and abundance estimates for calling minke whales using towed hydrophone array surveys, and the first estimates for this species in the Mariana Islands region. These are considered minimum estimates of the true number of minke whales in the study area.  相似文献   

12.
  1. Growing developmental activities, such as hydropower construction, farm roads, and other human activities, are affecting the critically endangered white-bellied heron (WBH). Out of a known global population of 60, 28 individuals inhabit the river basin area and freshwater lakes and ponds of Bhutan. Several constraints impede continuous monitoring of endangered species, such as the isolated and cryptic nature of the species and the remoteness of its habitat; to date, there are no long-term reference data or techniques implemented for continuous monitoring of this species.
  2. In this study, we designed acoustic detection and habitat characterisation methods using long-duration recordings from three habitat areas in Bhutan. Acoustic indices were extracted and used to implement a species-specific call detector and to generate habitat soundscape representations. Using WBH calls annotated in month-long recordings from a known site, a novel indices-based detector was implemented and tested. A total of 960 hr of continuous audio recordings from three habitats in Bhutan were analysed.
  3. We found that a species call detector implemented using a combination of acoustic indices (that includes measures of spectral and temporal entropy and different angles of spectral ridges) has a correct detection rate of 81%. Additionally, visual inspection of the species’ acoustic habitat using long-duration false-colour spectrograms enabled qualitative assessment of acoustic habitat structure and other dominant acoustic events.
  4. This study proposes a combined approach of species acoustic detection and habitat soundscape analysis for holistic acoustic monitoring of endangered species. As a direct outcome of this work, we documented acoustic reference data on the critically endangered WBH from multiple habitat areas and have analysed its temporal vocalisation patterns across sites.
  相似文献   

13.
The taxonomic challenge posed by cryptic species underlines the importance of using multiple criteria in species delimitation. In the current paper we tested the use of acoustic analysis as a tool to assess the real diversity in a cryptic species complex of Neotropical ants. In order to understand the potential of acoustics and to improve consistency in the conclusions by comparing different approaches, phylogenetic relationships of all the morphs considered were assessed by the analysis of a fragment of the mitochondrial DNA cytochrome b. We observed that each of the cryptic morph studied presents a morphologically distinct stridulatory organ and that all sympatric morphs produce distinctive stridulations. This is the first evidence of such a degree of specialization in the acoustic organ and signals in ants, which suggests that stridulations may be among the cues used by these ants during inter-specific interactions. Mitochondrial DNA variation corroborated the acoustic differences observed, confirming acoustics as a helpful tool to determine cryptic species in this group of ants, and possibly in stridulating ants in general. Congruent morphological, acoustic and genetic results constitute sufficient evidence to propose each morph studied here as a valid new species, suggesting that P. apicalis is a complex of at least 6 to 9 species, even if they present different levels of divergence. Finally, our results highlight that ant stridulations may be much more informative than hitherto thought, as much for ant communication as for integrative taxonomists.  相似文献   

14.
Density estimation for marine mammal species is performed primarily using visual distance sampling or capture‐recapture. Minke whales in Hawaiian waters are very difficult to sight; however, they produce a distinctive “boing” call, making them ideal candidates for passive acoustic density estimation. We used an array of 14 bottom‐mounted hydrophones, distributed over a 60 × 30 km area off Kauai, Hawaii, to estimate density during 12 d of recordings in early 2006. We converted the number of acoustic cues (i.e., boings) detected using signal processing software into a cue density by accounting for the false positive rate and probability of detection. The former was estimated by manual validation, the latter by applying spatially explicit capture‐recapture (SECR) methods to a subset of data where we had determined which hydrophones detected each call. Estimated boing density was 130 boings per hour per 10,000 km2 (95% CI 104–163). Little is known about the population's acoustic behavior, so conversion from boing to animal density is difficult. As a demonstration of the method, we used a tentative boing rate of 6.04 boings per hour, from a single animal tracked in 2009, to give an estimate of 21.5 boing‐calling minke whales per 10,000 km2.  相似文献   

15.
Common marmosets vocalize phee calls as isolation calls, which seem to facilitate their reunion with family groups. To identify multiple acoustic properties with different time courses, we examined acoustic modulations of phees during different social contexts of isolation. Subject marmosets were totally isolated in one condition, were visually isolated and could exchange vocalizations in another condition, and were visually isolated and subsequently totally isolated in a third condition. We recorded 6,035 phees of 10 male–female marmoset pairs and conducted acoustic analysis. The marmosets frequently vocalized phees that were temporally elongated and louder during isolation, with varying time courses of these changes in acoustic parameters. The vocal rates and sound levels of the phees increased as soon as the marmosets saw their pair mates being taken away, and then gradually calmed down. The phee duration was longer in conditions during which there were no vocal responses from their pair mates. Louder vocalizations are conspicuous and seem to be effective for long‐distance transmission, whereas shorter call duration during vocal exchanges might avoid possible vocal overlap between mates. Am. J. Primatol. 72:681–688, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Autonomous acoustic recorders are an increasingly popular method for low‐disturbance, large‐scale monitoring of sound‐producing animals, such as birds, anurans, bats, and other mammals. A specialized use of autonomous recording units (ARUs) is acoustic localization, in which a vocalizing animal is located spatially, usually by quantifying the time delay of arrival of its sound at an array of time‐synchronized microphones. To describe trends in the literature, identify considerations for field biologists who wish to use these systems, and suggest advancements that will improve the field of acoustic localization, we comprehensively review published applications of wildlife localization in terrestrial environments. We describe the wide variety of methods used to complete the five steps of acoustic localization: (1) define the research question, (2) obtain or build a time‐synchronizing microphone array, (3) deploy the array to record sounds in the field, (4) process recordings captured in the field, and (5) determine animal location using position estimation algorithms. We find eight general purposes in ecology and animal behavior for localization systems: assessing individual animals' positions or movements, localizing multiple individuals simultaneously to study their interactions, determining animals' individual identities, quantifying sound amplitude or directionality, selecting subsets of sounds for further acoustic analysis, calculating species abundance, inferring territory boundaries or habitat use, and separating animal sounds from background noise to improve species classification. We find that the labor‐intensive steps of processing recordings and estimating animal positions have not yet been automated. In the near future, we expect that increased availability of recording hardware, development of automated and open‐source localization software, and improvement of automated sound classification algorithms will broaden the use of acoustic localization. With these three advances, ecologists will be better able to embrace acoustic localization, enabling low‐disturbance, large‐scale collection of animal position data.  相似文献   

17.
A major barrier to evolutionary studies of sex determination and sex chromosomes has been a lack of information on the types of sex‐determining mechanisms that occur among different species. This is particularly problematic in groups where most species lack visually heteromorphic sex chromosomes, such as fish, amphibians and reptiles, because cytogenetic analyses will fail to identify the sex chromosomes in these species. We describe the use of restriction site‐associated DNA (RAD) sequencing, or RAD‐seq, to identify sex‐specific molecular markers and subsequently determine whether a species has male or female heterogamety. To test the accuracy of this technique, we examined the lizard Anolis carolinensis. We performed RAD‐seq on seven male and ten female A. carolinensis and found one male‐specific molecular marker. Anolis carolinensis has previously been shown to possess male heterogamety and the recently published A. carolinensis genome facilitated the characterization of the sex‐specific RAD‐seq marker. We validated the male specificity of the new marker using PCR on additional individuals and also found that it is conserved in some other Anolis species. We discuss the utility of using RAD‐seq to identify sex‐determining mechanisms in other species with cryptic or homomorphic sex chromosomes and the implications for the evolution of male heterogamety in Anolis.  相似文献   

18.
1. The occurrence of unresolved complexes of cryptic species may hinder the identification of the main ecological drivers of biodiversity when different cryptic taxa have different ecological requirements. 2. We assessed factors influencing the occurrence of Synchaeta species (monogonont rotifers) in 17 waterbodies of the Trentino‐South Tyrol region in the Eastern Alps. To do so, we compared the results of using unresolved complexes of cryptic species, as is common practice in limnological studies based on morphological taxonomy, and having resolved cryptic complexes, made possible by DNA taxonomy. 3. To identify cryptic species, we used the generalised mixed Yule coalescent (GMYC) model. We investigated the relationship between the environment and the occurrence of Synchaeta spp. by multivariate ordination using two definitions of the units of diversity, namely (i) unresolved species complexes (morphospecies) and (ii) putative cryptic species (GMYC entities). Our expectation was that resolving complexes of cryptic species could provide more information than using morphospecies. 4. As expected, DNA taxonomy provided greater taxonomic resolution than morphological taxonomy. Further, environmental‐based multivariate ordination on cryptic species explained a significantly higher proportion of variance than that based on morphospecies. Occurrence of GMYC entities was related to total phosphorus (TP), whereas no relationship could be found between morphospecies and the environment. Moreover, different cryptic species within the same morphospecies showed different, and even opposite, preferences for TP. In addition, the wide geographical distribution of haplotypes and cryptic species indicated the absence of barriers to dispersal in Synchaeta.  相似文献   

19.
20.
Field identification of European wood mice Apodemus spp. is challenging due to their morphological resemblance and frequent sympatry. We developed discriminant functions based on body mass and acoustic variables of distress calls to identify three cryptic species of wood mice (Apodemus alpicola, Apodemus flavicollis and Apodemus sylvaticus) in Italy. We achieved an overall correct classification rate of 86–98%; the best results (100% correct classification) were obtained for Apodemus sylvaticus calls. This minimally invasive, effective and low‐cost method highlights the potential role of bioacoustics as a powerful tool for field discrimination of cryptic species of terrestrial mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号