首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flowering plants typically use floral rewards to attract animal pollinators. Unlike nectar, pollen rewards are usually visible and may thus function as a signal that influences landing decisions by pollen‐seeking insects. Here we artificially manipulate the presence of both pollen and staminal hairs (a putative false signal of pollen reward availability) in the hermaphroditic lily Bulbine abyssinica (Xanthorrhoeaceae) to investigate their effects on bee visitation and fecundity, and also test for trade‐offs between pollen production and seed production. Honeybees, the primary floral visitors, are probably not able to distinguish between colours of petals, staminal hairs and pollen of B. abyssinica, according to analysis of reflectance spectra in a bee vision model. Flowers with both pollen and hairs removed had the lowest levels of bee visitation, seed set and seed abortions. Flowers containing hairs had an ~50% increase in visitation rate and seed set compared with emasculated flowers, while intact controls had the highest seed abortion rate. Ovule discounting in intact flowers is probably due to ovarian self‐incompatibility (or strong early inbreeding depression) as ovules penetrated by tubes from self‐pollen uniformly failed to develop into seeds. These results show that staminal hairs can enhance plant fecundity by increasing attraction of pollen‐seeking insects to flowers without increasing the risk of ovule discounting through pollinator‐mediated self‐pollination. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 481–490.  相似文献   

2.
  • Breeding systems of plants determine their reliance on pollinators and ability to produce seeds following self‐pollination. Self‐sterility, where ovules that are penetrated by self‐pollen tubes that do not develop into seeds, is usually considered to represent either a system of late‐acting self‐incompatibility or strong early inbreeding depression. Importantly, it can lead to impaired female function through ovule or seed discounting when stigmas receive mixtures of self and cross pollen, unless cross pollen is able to reach the ovary ahead of self pollen (‘prepotency’). Self‐sterility associated with ovule penetration by self‐pollen tubes appears to be widespread among the Amaryllidaceae.
  • We tested for self‐sterility in three Cyrtanthus species – C. contractus, C. ventricosus and C. mackenii – by means of controlled hand‐pollination experiments. To determine the growth rates and frequency of ovule penetration by self‐ versus cross‐pollen tubes, we used fluorescence microscopy to examine flowers of C. contractus harvested 24, 48 and 72 h after pollination, in conjunction with a novel method of processing these images digitally. To test the potential for ovule discounting (loss of cross‐fertilisation opportunities when ovules are disabled by self‐pollination), we pollinated flowers of C. contractus and C. mackenii with mixtures of self‐ and cross pollen.
  • We recorded full self‐sterility for C. contractus and C. ventricosus, and partial self‐sterility for C. mackenii. In C. contractus, we found no differences in the growth rates of self‐ and cross‐pollen tubes, nor in the proportions of ovules penetrated by self‐ and cross‐pollen tubes. In this species, seed set was depressed (relative to cross‐pollinated controls) when flowers received a mixture of self and cross pollen, but this was not the case for C. mackenii.
  • These results reveal variation in breeding systems among Cyrtanthus species and highlight the potential for gender conflict in self‐sterile species in which ovules are penetrated and disabled by pollen tubes from self pollen.
  相似文献   

3.
  • Mixed cross and self‐pollen load on the stigma (mixed pollination) of species with late‐acting self‐incompatibility system (LSI) can lead to self‐fertilized seed production. This “cryptic self‐fertility” may allow selfed seedling development in species otherwise largely self‐sterile. Our aims were to check if mixed pollinations would lead to fruit set in LSI Adenocalymma peregrinum, and test for evidence of early‐acting inbreeding depression in putative selfed seeds from mixed pollinations.
  • Experimental pollinations were carried out in a natural population. Fruit and seed set from self‐, cross and mixed pollinations were analysed. Further germination tests were carried out for the seeds obtained from treatments.
  • Our results confirm self‐incompatibility, and fruit set from cross‐pollinations was three‐fold that from mixed pollinations. This low fruit set in mixed pollinations is most likely due to a greater number of self‐ than cross‐fertilized ovules, which promotes LSI action and pistil abortion. Likewise, higher percentage of empty seeds in surviving fruits from mixed pollinations compared with cross‐pollinations is probably due to ovule discounting caused by self‐fertilization. Moreover, germinability of seeds with developed embryos was lower in fruits from mixed than from cross‐pollinations, and the non‐viable seeds from mixed pollinations showed one‐third of the mass of those from cross‐pollinations.
  • The great number of empty seeds, lower germinability, lower mass of non‐viable seeds, and higher variation in seed mass distribution in mixed pollinations, strongly suggests early‐acing inbreeding depression in putative selfed seeds. In this sense, LSI and inbreeding depression acting together probably constrain self‐fertilized seedling establishment in A. peregrinum.
  相似文献   

4.
Outbreeding confers an evolutionary advantage, and flowering plants have evolved a variety of contrivances for its maximization. However, neither fruit set nor seed set is realized to its fullest potential for a variety of reasons. The causes of low flower to fruit and seed to ovule ratios were investigated in naturally occurring bael trees (Aegle marmelos) at two sites for three seasons. The study established that the mass effect of synchronized flowering attracted a variety of insect pollinators to the generalist flowers; Apis dorsata was the most efficient pollinator. The seed to ovule ratio was low despite high natural pollination efficiency (c. 2400 pollen per stigma). Although pollination‐induced structural and histochemical changes in the style allowed many (9.5 ± 2.1) pollen tubes to grow, only cross‐pollen tubes could grow through the style. Gametophytic self‐incompatibility, manifested in the stylar zone, resulted in a significantly slower growth rate of self‐pollen tubes. The occurrence of obligate self‐incompatibility, coupled with increased self‐pollen deposition (geitonogamy), caused a significant number of flowers to abort. Fruit retention in the trees declined from 40% to 12% as a result of abortion of fruits at different stages of development. The number of mature fruits on a tree was negatively correlated (r = ?0.82) with their size. It is inferred that low natural fecundity in A. marmelos is primarily a result of obligate self‐incompatibility and strong post‐fertilization maternal regulation of allocation of resources to the developing fruits. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 572–585.  相似文献   

5.
It has been assumed that species of the large African genus Protea have strong self‐incompatibility systems. However, this assumption was based largely on studies conducted on a clade of bird‐pollinated species that occur in the shrubby fynbos vegetation of the Cape region of southern Africa. To test whether self‐incompatibility occurs in a grassland/savanna Protea clade, which is largely insect‐pollinated, we performed controlled pollination experiments on four species, P. caffra, P. dracomontana, P. simplex and P. welwitschii. Although pollen–ovule ratios of all four species fall within the range for outcrossers, all four species are self‐compatible and capable of autonomous seed production. Using fluorescence microscopy, we found that self‐pollen tubes had the same probability of reaching ovules as cross‐pollen tubes. In the small tree P. caffra, selfed progeny had rates of germination and survivorship that were identical to those of crossed progeny. The grassland Protea spp. studied are likely to have mixed mating systems on account of being both visited by insects and capable of autonomous selfing. If one assumes previous reports of self‐incompatibility in Protea to be reliable, there have been at least five losses of self‐incompatibility and two gains of autonomous selfing in this genus. However, earlier studies in the genus were often methodologically flawed and a thorough re‐analysis of breeding systems in Protea is required. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 433–446.  相似文献   

6.
Pollinator activity and competition for pollinators lead to quantitative and qualitative pollen limitations on seed production and affect the reproductive success of plant species, depending on their breeding system (e.g., self‐compatibility and heterospecific compatibility) and genetic load (e.g., inbreeding depression and hybrid inviability). In alpine ecosystems, snowmelt regimes determine the distribution and phenology of plant communities. Plant species growing widely along a snowmelt gradient often grow with different species among local populations. Their pollinators also vary in their abundance, activity, and behavior during the season. These variations may modify plant–pollinator and plant–plant interactions. We integrated a series of our studies on the alpine dwarf shrub, Phyllodoce aleutica (Ericaceae), to elucidate the full set of intrinsic (species‐specific breeding system) and extrinsic factors (snow condition, pollinator activity, and interspecific competition) acting on their reproductive process. Seasonality of pollinator activity led to quantitative pollen limitation in the early‐blooming populations, whereas in the late‐blooming populations, high pollinator activity ensured pollination service, but interspecific competition for pollinators led to qualitative and quantitative pollen limitation in less competitive species. However, negative effects of illegitimate pollen receipt on seed‐set success might be reduced when cryptic incompatibility systems (i.e., outcross pollen grains took priority over self‐ and heterospecific pollen grains) could effectively prevent ovule and seed discounting. Our studies highlight the importance of species‐specific responses of plant reproduction to changing pollinator availability along environmental gradients to understand the general features of pollination networks in alpine ecosystems.  相似文献   

7.

Background and Aims

Animal pollination is typically an uncertain process that interacts with self-incompatibility status to determine reproductive success. Seed set is often pollen-limited, but species with late-acting self-incompatibility (SI) may be particularly vulnerable, if self-pollen deposition results in ovule discounting. Pollination is examined and the occurrence of late-acting SI and ovule discounting assessed in Cyrtanthus breviflorus.

Methods

The pollination system was characterized by observing floral visitors and assessing nectar production and spectral reflectance of flowers. To assess late-acting SI and ovule discounting, growth of self- and cross-pollen tubes, and seed set following open pollination or hand pollination with varying proportions of self- and cross-pollen, were examined.

Key Results

Native honeybees Apis mellifera scutellata pollinated flowers as they actively collected pollen. Most flowers (≥70 %) did not contain nectar, while the rest produced minute volumes of dilute nectar. The flowers which are yellow to humans are visually conspicuous to bees with a strong contrast between UV-reflecting tepals and UV-absorbing anthers and pollen. Plants were self-incompatible, but self-rejection was late-acting and both self- and cross-pollen tubes penetrated ovules. Seed set of open-pollinated flowers was pollen-limited, despite pollen deposition exceeding ovule number by 6-fold. Open-pollinated seed set was similar to that of the cross + self-pollen treatment, but was less than that of the cross-pollen-only treatment.

Conclusions

Flowers of C. breviflorus are pollinated primarily by pollen-collecting bees and possess a late-acting SI system, previously unknown in this clade of the Amaryllidaceae. Pollinators of C. breviflorus deposit mixtures of cross- and self-pollen and, because SI is late-acting, self-pollen disables ovules, reducing female fertility. This study thus contributes to growing evidence that seed production in plants with late-acting SI systems is frequently limited by pollen quality, even when pollinators are abundant.  相似文献   

8.
Geum urbanum and Geum rivale are two widely hybridizing perennial herbs. Estimation of the breeding systems of these taxa using nuclear microsatellite markers scored in mother–progeny arrays demonstrated that, in pure populations, G. urbanum is predominantly selfing (outcrossing rate, t = 0.058 to 0.177), whereas G. rivale is predominantly outcrossing (t = 0.686–0.775). Theory suggests that hybridization between inbreeding and outcrossing species can potentially generate novel inbreeding lineages. However, the establishment of such lineages may be restricted either by self‐incompatibility loci or deleterious recessive alleles derived from the outcrossing parent. To assess the likelihood that hybridization between G. urbanum and G. rivale will generate novel inbreeding lineages, self‐incompatibility and inbreeding depression were investigated in the two taxa. Seed set in the absence of pollinators, and after controlled self‐ and cross‐pollination, was measured to study self‐incompatibility. Inbreeding depression was measured by estimating the relative fitness of offspring from controlled self‐and cross‐pollinations. Geum urbanum was fully self‐compatible [self‐compatibility index (SCI) = 1] and bagged flowers showed full seed set. By contrast, only 3% of bagged flowers set seed in G. rivale and controlled self‐pollinations showed a 60–80% reduction in seed set compared to controlled outcross pollinations (SCI = 0.28). There was no evidence for inbreeding depression in G. urbanum, although significant, albeit low levels of inbreeding depression were detected in one of two G. rivale populations (δ = 0.33). The implication of these results is that if genetic material from G. rivale was incorporated into a hybrid with a selfing morphology, the establishment of this selfing lineage could be compromised by self‐incompatibility and inbreeding depression. The wider implications of these results for evolution in hybrid swarms between G. urbanum and G. rivale are discussed. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 977–990.  相似文献   

9.
Ovarian self‐incompatibility, including pre‐ and post‐zygotic reactions, is a complex mechanism for which we still lack many details relating to its function and significance. The joint presence of ovarian self‐incompatibility with style polymorphism is a rare combination that is found in the genus Narcissus. Usually, style polymorphic species have heteromorphic (diallelic and linked to style length locus) incompatibility, which prevents fertilization between individuals of the same morph, thereby helping to maintain equal proportions of floral morphs in populations. However, when present, self‐incompatibility in Narcissus is not linked to style polymorphism and cross‐fertilization within each morph is possible. Hence, self‐incompatibility in Narcissus is of particular interest when attempting to unravel the nature of the rejection reaction and aiming to assess possible cryptic differences in the fertilization process in intra‐ and inter‐morph crosses, which might ultimately explain the wide variation of morph‐ratio in the field. We examined the breeding system of Narcissus papyraceus, a style‐dimorphic species that has biased morph ratios in most of its populations. We studied pollen‐tube growth in the pistil and ovule fate after experimentally controlled hand pollinations. The growth of pollen tubes in self‐ and intra‐ and inter‐morph crosses was similar up to the point of micropyle penetration in both morphs but, subsequently, a pre‐zygotic failure appeared to affect male and female gametophytes in selfed pistils. A high proportion of ovules from self‐pollinated flowers showed signs of collapse and self‐pollen tubes were blocked or behaved abnormally before entering the embryo sac. Self‐incompatibility was stronger in the long‐styled morph than in the short‐styled morph. We did not find any conclusive sign of differential functioning between intra‐ and inter‐morph cross‐pollinations in any morph. These results enable us to rule out the possible effects of pollen–pistil interactions in N. papyraceus as a cause of morph‐ratio biases and confirm the exceptional nature of the self‐incompatibility mechanism in this polymorphic species. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 629–643.  相似文献   

10.
Pollen limitation and resource limitation have been documented as the major factors responsible for plants commonly producing more ovules than seeds, but few studies have examined pollen deposition directly in natural populations at different sites and times. We investigated the causes of low seed set in four populations of Liriodendron chinense (Magnoliaceae), an insect‐pollinated endangered tree endemic to southern China, over 2–3 years. One pistil potentially produces two ovules. The number of pistils per flower varies among populations, but in three of the four populations the variation in a given population was not significantly different among years. Overall, populations with higher pistil numbers tend to set more seeds per flower, but a positive correlation between pistil numbers and seed production per flower was observed in only one of the four populations. The numbers of pollen grains deposited per stigma varied from 0 to 60. The proportion of pollinated stigmas per flower ranged from 44% to 88% among populations and years. The numbers of pollen grains deposited per stigma and the percentages of pollinated stigmas were significantly different between populations, and two populations showed significant differences between years. A positive correlation between stigmatic pollen load and seed set was sought in ten population‐by‐year combinations but, in a given population, high stigmatic pollen loads did not always result in high seed set. Examination of pollen deposition, pistil and seed production over several sites and years showed that in addition to pollination, other factors such as resource or genetic loads were likely to limit the (lower than 10%) seed set in L. chinense. It appears that small, isolated populations experience severe pollination limitation; one population studied had seed/ovule ratios of 0.84% and 1.88% in 1995 and 1996. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 31–38.  相似文献   

11.
The pollination biology of the nectarless orchid Pogonia minor was investigated in central Japan. The investigation revealed that the solitary flowers failed to attract pollinators, while high rates of fruit set were observed in the natural population. Comparable levels of fruit set were obtained in bagged, artificial self‐pollinated and artificial cross‐pollinated plants, indicating that the species is not pollinator‐limited for fruit set under natural conditions. Autonomous self‐pollination in P. minor resulted from a reduced rostellum, which allowed contact between the pollinia and the stigma. Self‐pollination is thought to be an adaptive response that provides reproductive assurance under conditions of pollinator limitation. Since pollen limitation is generally known to be frequent among deceptive orchids, strong pollen limitation is probably a driving force in the autonomous self‐pollination mechanism in the nectarless orchid P. minor.  相似文献   

12.
In flowering plants, shifts from outcrossing to partial or complete self‐fertilization have occurred independently thousands of times, yet the underlying adaptive processes are difficult to discern. Selfing's ability to provide reproductive assurance when pollination is uncertain is an oft‐cited ecological explanation for its evolution, but this benefit may be outweighed by costs diminishing its selective advantage over outcrossing. We directly studied the fitness effects of a self‐compatibility mutation that was backcrossed into a self‐incompatible (SI) population of Leavenworthia alabamica, illuminating the direction and magnitude of selection on the mating‐system modifier. In array experiments conducted in two years, self‐compatible (SC) plants produced 17–26% more seed, but this advantage was counteracted by extensive seed discounting—the replacement of high‐quality outcrossed seeds by selfed seeds. Using a simple model and simulations, we demonstrate that SC mutations with these attributes rarely spread to high frequency in natural populations, unless inbreeding depression falls below a threshold value (0.57 ≤ δthreshold ≤ 0.70) in SI populations. A combination of heavy seed discounting and inbreeding depression likely explains why outcrossing adaptations such as self‐incompatibility are maintained generally, despite persistent input of selfing mutations, and frequent limits on outcross seed production in nature.  相似文献   

13.
The genus Jacaranda shows notable karyotype stability and a prevailing self‐sterile breeding system with evidence of late‐acting self‐incompatibility in several species. However, some studies have indicated self‐compatibility in J. mimosifolia, a species cultivated worldwide in tropical and subtropical areas. Jacaranda cuspidifolia is a closely related species with natural distribution broadly overlapping with that of J. mimosifolia, and manual heterospecific pollination studies have indicated that these species are interfertile, but there is no report on the breeding system of the former. In this study, we used hand‐pollination experiments, pistil longevity, epi‐fluorescence and histological analysis of post‐pollination events to determine the breeding system of J. cuspidifolia. We also employed intra and interspecific crosses and seed germination tests to reevaluate the breeding system of J. mimosifolia and the inter‐fertility between the two species. Some fruits were initiated from self‐pollinated pistils in J. mimosifolia, but none of them reached maturity. On the other hand, complete absence of fruit development by self‐pollination was verified in J. cuspidifolia, while in situ pollen tube growth and histological analysis of post‐pollination events in selfed pistils revealed the characteristic ovule penetration, fertilization and endosperm initiation also observed in other bignoniaceous species with late‐acting self‐incompatibility. Low outbreeding barriers seem to operate between these species because reciprocal interspecific crosses and hybrid seed germination tests indicated they are bilaterally interfertile. However, fruit/seed production and seed germinability were significantly lower when pistils of J. cuspidifolia were pollinated with pollen of J. mimosifolia, compared with crosses in the opposite direction, which indicates a partial unilateral incompatibility. This result is discussed in the context of the possible occurrence of self‐compatibility in J. mimosifolia. The low level of incongruity operating between the two species also points to their recent evolutionary divergence.  相似文献   

14.
  • The evolution of monomorphisms from heterostylous ancestors has been related to the presence of homostyly and the loss of self‐incompatibility, allowing the occurrence of selfing, which could be advantageous under pollinator limitation. However, flowers of some monomorphic species show herkogamy, attraction and rewarding traits that presumably favour cross‐pollination and/or a mixed mating system. This study evaluated the contributions of pollinators, breeding system and floral traits to the reproduction of Turnera velutina, a herkogamous monomorphic species.
  • Floral visitors and frequency of visits were recorded, controlled hand cross‐pollinations were conducted under greenhouse and natural conditions, and individual variation in floral traits was characterised to determine their contribution to seed production.
  • Apis mellifera was the most frequent floral visitor. Flowers presented approach herkogamy, high variation in nectar features, and a positive correlation of floral length with nectar volume and sugar concentration. Seed production did not differ between manual self‐ and cross‐pollinations, controls or open cross‐pollinations, but autonomous self‐pollination produced, on average, 82.74% fewer seeds than the other forms, irrespective of the level of herkogamy.
  • Differences in seed production among autonomous self‐pollination and other treatments showed that T. velutina flowers depend on insect pollination for reproduction, and that approach herkogamy drastically reduced seed production in the absence of pollen vectors. The lack of differences in seed production from manual cross‐ and self‐pollinations suggests the possible presence of a mixed mating system in the studied population. Overall, this species was possibly derived from a distylous ancestor but appears fully capable of outcrossing despite being monomorphic.
  相似文献   

15.
Reproductive biology and plant fertility are directly related to many aspects of plant evolution and conservation biology. Vriesea friburgensis is an epiphytic and terrestrial bromeliad endemic to the Brazilian Atlantic rainforest. Hand‐pollination experiments were used to examine the reproductive system in a wild population of V. friburgensis. Plant fertility was assigned considering flower production, fruit and seed set, seed germination, and pollen viability. Self‐sterility observed from spontaneous selfing and manual self‐pollination treatments may be the consequence of late‐acting self‐incompatibility. Hand‐pollination results indicated no pollen limitation in the population studied. Floral biology features such as a few daily open flowers, nectar production, and sugar concentration corroborate hummingbirds as effective pollinators, although bees were also documented as pollinators. Components of fitness such as high flower, fruit, and seed production together with high seed and pollen viability indicate that this wild population is viable. From a conservation point of view, we highlight that this self‐sterile species depends on pollinator services to maintain its population fitness and viability through cross‐pollination. Currently, pollinators are not limited in this population of V. friburgensis. Conversely, the maintenance and continuous conservation of this community is essential for preserving this plant–pollinator mutualism.  相似文献   

16.
Self‐compatibility in apomictic pseudogamic species is considered fundamental to assure reproduction by seeds in extreme situations, making apomictic species more advantageous than sexual ones in these scenarios. Anemopaegma acutifolium is a polyploidy, apomictic sporophytic species with no endosperm development in ovules of unpollinated pistils, which indicates obligate pseudogamy. Thus, the aim of the present work is to study the breeding system and post‐pollination events to test if there is similar pseudogamous development irrespective of pollination treatment. We analysed fruit and seed set obtained in controlled experimental pollinations, as well as embryo number per seed, and the progress of ovule penetration, fertilisation and early endosperm development between self‐ and cross‐pollinated pistils. We found that the species is self‐fertile and that spontaneous selfing fruit set is also possible, although emasculated flowers never form fruits. Selfed pistils were as efficient as crossed ones for all parameters analysed, except for a delay in endosperm development observed in the former that may be an effect of the late‐acting self‐incompatibility. Therefore, the avoidance of selfed pistil abortion seems to be promoted by the presence of adventitious embryos and a normal endosperm. We conclude that A. acutifolium shows apomixis‐related pseudo‐self‐compatibility, as in other self‐fertile apomictic species of Bignoniaceae, which confer reproductive assurance and increases fruit‐set and persistence ability in fast‐changing tropical habitats.  相似文献   

17.
Understory herbs are an essential part of tropical rain forests, but little is known about factors limiting their reproduction. Many of these herbs are clonal, patchily distributed, and produce large floral displays of nectar‐rich 1‐d flowers to attract hummingbird pollinators that may transport pollen over long distances. The aim of this study was to investigate the effects of clonality, cross‐proximity, and patchy distribution on the reproduction of the hummingbird‐pollinated Amazonian herb Heliconia metallica. We experimentally pollinated flowers within populations with self‐pollen and with pollen of different diversity, crossed flowers between populations, and added supplemental pollen to ramets growing solitarily or in conspecific patches. Only flowers pollinated early in the morning produced seeds. Selfed flowers produced seeds, but seed number and mass were strongly reduced, suggesting partial sterility and inbreeding depression after selfing. Because of pollen competition, flowers produced more seeds after crosses with several than with single donor plants. Crosses between populations mostly resulted in lower seed production than those within populations, suggesting outbreeding depression. Ramets in patches produced fewer seeds than solitary ramets and were more pollen‐limited, possibly due to geitonogamy and biparental inbreeding in patches. We conclude that high rates of geitonogamy due to clonality and pollen limitation due to the short receptivity of flowers and patchy distribution constrain the reproduction of this clonal herb. Even in unfragmented rain forests with highly mobile pollinators, outbreeding depression may be a widespread phenomenon in plant reproduction.  相似文献   

18.
Two animal-pollinated hermaphrodite plants, Pedicularis siphonantha and P. longiflora , have been used to investigate factors limiting seed production in natural populations. To evaluate the potential seed abortion due to resources limitation, seed development has been observed and seed count conducted twice. Seed production per capsule has been compared when flowers have been removed and in a control group. Open pollination has been investigated and pollen supplementation undertaken to estimate the possibility of pollen limitation. Results show that seed abortion is frequent. Stigmatic pollen load is significantly higher than ovule number per ovary under open pollination for both species. Additional self and outcross pollen did not affect seed production. Flower removal significantly increases seed production per capsule, which indicates that seed production of the studied species is limited by available resources. To detect differences in seed production between flowers pollinated by self and outcross pollen, hand pollination of bagged flowers has also been conducted in natural populations of the two Pedicularis species. Compared with open pollination, hand-pollinating self-pollen decreases, while outcross pollen increases seed production per capsule. Such results suggest that inbreeding depression in the two self-compatible species may also result in partial seed abortion under open pollination if mixed pollen is deposited on the stigma. Our results also suggest that pollen interference plays an important role in low female fertility in the two Pedicularis species.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 147 , 83–89.  相似文献   

19.
Pollinator‐mediated selection does not seem to have a direct influence on the evolution of a long corolla tube in a nectarless flower. We hypothesized that the long pistil length of the nectarless flower with a deep corolla tube provided an opportunity for male competition. Pedicularis siphonantha, a nectarless and partially self‐incompatible lousewort with substantial variation in corolla tube length, was used to test the hypothesis. We tested whether and how corolla tube length affected seed production per capsule and seed germination rate with different pollination treatments. Flowers were hand‐pollinated with pollen from one self donor and one outcross donor and mixed pollen grains consisting of equal amounts from the two donor types, respectively. Additionally, seeds from open‐pollinated flowers with different corolla tube lengths were collected separately for measurement of germination rate. Pollination treatment and corolla tube length significantly affected number of seeds per capsule. Moreover, a significant positive relationship between seeds per capsule and corolla tube length was found when mixed hand pollination was conducted. Seeds of self hand‐pollinated flowers had a lower germination rate than those from outcross‐pollinated flowers. Under open pollination, seeds from flowers with longer corolla tubes tended to have higher germination rate. In P. siphonantha, outcross pollen may have a higher probability of contributing to the next generation when transferred to flowers with longer corolla tubes. The pistil length, therefore, should be seen as a female choice mechanism, which provides an arena for male‐to‐male competition. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 526–532.  相似文献   

20.
Petrocoptis montsicciana (Caryophyllaceae) is a threatened pre‐Pyrenean endemic that grows exclusively on caves and walls of limestone. We studied its pollination ecology by monitoring phenology and by evaluating pollen and nectar production, pollinator activity (frequency and behaviour of visitors), quantity and quality of pollination services, pollen/ovule ratio, and seed set in response to insect exclusion and self‐compatibility tests. We also analysed the effect of population size on reproductive mechanisms by comparing a large and a small population. Flowers of P. montsicciana produced nectar and were visited by Hymenoptera (79.7%), Diptera (11.5%), and Lepidoptera (8.8%). The most frequent pollinators (60.6% of total visits) were long‐tongued bees of the genus Anthophora. Both populations had a similar range of pollinators. We found a correlation between the number of visited flowers and the number of open flowers per census; 88.7% of pollen grains deposited on the stigmas were conspecific and the main competitor was another chasmophyte plant, Antirrhinum molle. Bagged flowers set seeds but significantly less so than hand‐self‐pollinated and control flowers. Thus, although self‐compatible and self‐pollinated, entomophilous pollination of P. montsicciana is required in order to explain c. 10–40% of total seed set, in accordance with P/O ratio estimations. Bagged flowers from the small population set significantly more seeds than the large one. Visitation rates were lower in the small population, but, unexpectedly, showed higher stigmatic pollen loads and similar or higher seed set. These results suggest an increase of spontaneous selfing rates in the small population, probably favoured by a smaller flower size, which can not only assure reproductive success when pollinators are scarce, but also provide additional potential to adapt to climatic changes. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 76 , 79–90.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号