首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
This study aimed to identify regions of the genome affecting resistance to gastrointestinal nematodes in a Creole goat population naturally exposed to a mixed nematode infection (Haemonchus contortus, Trichostrongylus colubriformis and Oesophagostomum columbianum) by grazing on irrigated pasture. A genome‐wide quantitative trait loci (QTL) scan was performed on 383 offspring from 12 half‐sib families. A total of 101 microsatellite markers were genotyped. Traits analysed were faecal egg count (FEC), packed cell volume (PCV), eosinophil count and bodyweight (BW) at 7 and 11 months of age. Levels of activity of immunoglobulin A (IgA) and activity of immunoglobulin E (IgE) anti‐Haemonchus contortus L3 crude extracts and adult excretion/secretion products (ESPs) were also analysed. Using interval mapping, this study identified 13 QTL for parasite resistance. Two QTL linked with FEC were found on chromosomes 22 and 26. Three QTL were detected on chromosomes 7, 8 and 14 for eosinophil counts. Three QTL linked with PCV were identified on chromosomes 5, 9 and 21. A QTL for BW at 7 months of age was found on chromosome 6. Lastly, two QTL detected on chromosomes 3 and 10 were associated with IgE anti‐L3, and IgE anti‐ESP was linked with two QTL on chromosomes 1 and 26. This study is the first to have identified regions of the genome linked with nematode resistance in a goat population using a genome scan. These results provide useful tools for the understanding of parasite resistance in small ruminants.  相似文献   

2.
A genome‐wide scan for quantitative trait loci (QTL) affecting gastrointestinal nematode resistance in sheep was completed using a double backcross population derived from Red Maasai and Dorper ewes bred to F1 rams. This design provided an opportunity to map potentially unique genetic variation associated with a parasite‐tolerant breed like Red Maasai, a breed developed to survive East African grazing conditions. Parasite indicator phenotypes (blood packed cell volume – PCV and faecal egg count – FEC) were collected on a weekly basis from 1064 lambs during a single 3‐month post‐weaning grazing challenge on infected pastures. The averages of last measurements for FEC (AVFEC) and PCV (AVPCV), along with decline in PCV from challenge start to end (PCVD), were used to select lambs (N = 371) for genotyping that represented the tails (10% threshold) of the phenotypic distributions. Marker genotypes for 172 microsatellite loci covering 25 of 26 autosomes (1560.7 cm ) were scored and corrected by Genoprob prior to qxpak analysis that included Box–Cox transformed AVFEC and arcsine transformed PCV statistics. Significant QTL for AVFEC and AVPCV were detected on four chromosomes, and this included a novel AVFEC QTL on chromosome 6 that would have remained undetected without Box–Cox transformation methods. The most significant P‐values for AVFEC, AVPCV and PCVD overlapped the same marker interval on chromosome 22, suggesting the potential for a single causative mutation, which remains unknown. In all cases, the favourable QTL allele was always contributed from Red Maasai, providing support for the idea that future marker‐assisted selection for genetic improvement of production in East Africa will rely on markers in linkage disequilibrium with these QTL.  相似文献   

3.
Phenotypic measurements of chicken egg character and production traits are restricted to mature females only. Marker assisted selection of immature chickens using quantitative trait loci (QTL) has the potential to accelerate the genetic improvement of these traits in the chicken population. The QTL for 12 traits (i.e. body weight (BW), six for egg character, three for egg shell colour and two for egg production) of chickens were identified. An F2 population comprising 265 female chickens obtained by crossing White Leghorn and Rhode Island Red breeds and genotyped for 123 microsatellite markers was used for detecting QTL. Ninety-six markers were mapped on 25 autosomal linkage groups, and 13 markers were mapped on one Z chromosomal linkage group. Eight previous unmapped markers were assigned to their respective chromosomes in this study. Significant QTL were detected for BW on chromosomes 4 and 27, egg weight on chromosome 4, the short length of egg on chromosome 4, and redness of egg shell colour (using the L*a*b* colour system) on chromosome 11. A significant QTL on the Z chromosome was linked with age at first egg. Significant QTL could account for 6-19% of the phenotypic variance in the F2 population.  相似文献   

4.
Egg production and egg quality are complex sex-limited traits that may benefit from the implementation of marker-assisted selection. The primary objective of the current study was to identify quantitative trait loci (QTL) associated with egg traits, egg production, and body weight in a chicken resource population. Layer (White Leghorn hens) and broiler (Cobb-Cobb roosters) lines were crossed to generate an F2 population of 508 hens over seven hatches. Phenotypes for 29 traits (weekly body weight from hatch to 6 weeks, egg traits including egg, albumen, yolk, and shell weight, shell thickness, shell puncture score, percentage of shell, and egg shell colour at 35 and 55 weeks of age, as well as egg production between 16 and 55 weeks of age) were measured in hens of the resource population. Genotypes of 120 microsatellite markers on 28 autosomal groups were determined, and interval mapping was conducted to identify putative QTL. Eleven QTL tests representing two regions on chromosomes 2 and 4 surpassed the 5% genome-wise significance threshold. These QTL influenced egg colour, egg and albumen weight, percent shell, body weight, and egg production. The chromosome 4 QTL region is consistent with multiple QTL studies that define chromosome 4 as a critical region significantly associated with a variety of traits across multiple resource populations. An additional 64 QTL tests surpassed the 5% chromosome-wise significance threshold.  相似文献   

5.
Behavioural indices in vertebrates are under genetic control at least to some extent. In spite of significant behavioural problems in farm animals, information on the genetic background of behaviour is sparse. The aim of this study was to map QTL for behavioural indices in swine under healthy conditions and after infection with Sarcocystis miescheriana , as behaviour can be significantly influenced by disease . This well-described parasite model subsequently leads to acute (day 14 p.i.), subclinical (day 28 p.i.) and chronic disease (day 42 p.i.), allowing the study and comparison of the behaviour of pigs under four different states of health or disease. The study was based on a well-described Pietrain/Meishan F2 family that has recently allowed the detection of QTL for disease resistance. We have mapped six genome-wide significant and 24 chromosome-wide significant QTL for six behavioural indices in swine. Six of these QTL (i.e. 20% of total QTL) showed effects on behavioural traits of the healthy pigs (day 0). Some of them (QTL on SSC11 and 18) lost influence on behavioural activities during disease, while the effects of others (QTL on SSC5, SSC8) partly remained during the whole experiment, although with different effects on the distinct behavioural indices. The disease model has been of high relevance to detect effects of gene loci on behavioural indices. Considering the importance of segregating alleles and environmental conditions that allow the identification of the phenotype, we conclude that there are indeed QTL with interesting effects on behavioural indices in swine.  相似文献   

6.
In this report we describe the analysis of an advanced intercross line (AIL) to confirm the quantitative trait locus (QTL) regions found for fatness traits in a previous study. QTL analysis was performed on chromosomes 1, 3, 4, 15, 18, and 27. The AIL was created by random intercrossing in each generation from generation 2 (G2) onwards until generation 9 (G9) was reached. QTL for abdominal fat weight (AFW) and/or percentage abdominal fat (AF%) on chromosomes 1, 3 and 27 were confirmed in the G9 population. In addition, evidence for QTL for body weight at the age of 5 (BW5) and 7 (BW7) weeks and for the percentage of intramuscular fat (IF%) were found on chromosomes 1, 3, 15, and 27. Significant evidence for QTL was detected on chromosome 1 for BW5 and BW7. Suggestive evidence was found on chromosome 1 for AFW, AF% and IF%, on chromosome 15 for BW5, and on chromosome 27 for AF% and IF%. Furthermore, evidence on the chromosome-wise level was found on chromosome 3 for AFW, AF%, and BW7 and on chromosome 27 for BW5. For chromosomes 4 and 18, test statistics did not exceed the significance threshold.  相似文献   

7.
A parallel association study was performed in two independent cattle populations based on 41 validated, targeted single nucleotide polymorphisms (SNPs) and four microsatellite markers to re-evaluate the multiple quantitative trait loci (QTL) architecture for milk performance on bovine chromosome 6 (BTA6). Two distinct QTL located in the vicinity of the middle region of BTA6, but differing unambiguously regarding their effects on milk composition and yield traits were validated in the German Holstein population. A highly significant association of the protein variant ABCG2 p.Tyr581Ser with milk composition traits reconfirmed the causative molecular relevance of the ABCG2 gene in QTL region 1, whereas in QTL region 2, significant and tentative associations between gene variants RW070 and RW023 (located in the promoter region and exon 9 of the PPARGC1A gene for milk yield traits) were detected. For the German Fleckvieh population, only RW023 showed a tentative association with milk yield traits, whereas those loci with significant effects in German Holsteins (ABCG2 p.Tyr581Ser, RW070) showed fixed alleles. Even though our new data highlight two variants in the PPARGC1A gene (RW023, RW070) in QTL region 2, based on the results of our study, currently no unequivocal conclusion about the causal background of this QTL affecting milk yield traits can be drawn. Notably, the German Holstein and Fleckvieh populations, known for their divergent degree of dairy type, differ substantially in their allele frequencies for the growth-associated NCAPG p.Ile442Met locus.  相似文献   

8.
Selective genotyping is common because it can increase the expected correlation between QTL genotype and phenotype and thus increase the statistical power of linkage tests (i.e., regression-based tests). Linkage can also be tested by assessing whether the marginal genotypic distribution conforms to its expectation, a marginal-based test. We developed a class of joint tests that, by constraining intercepts in regression-based analyses, capitalize on the information available in both regression-based and marginal-based tests. We simulated data corresponding to the null hypothesis of no QTL effect and the alternative of some QTL effect at the locus for a backcross and an F2 intercross between inbred strains. Regression-based and marginal-based tests were compared to corresponding joint tests. We studied the effects of random sampling, selective sampling from a single tail of the phenotypic distribution, and selective sampling from both tails of the phenotypic distribution. Joint tests were nearly as powerful as all competing alternatives for random sampling and two-tailed selection under both backcross and F2 intercross situations. Joint tests were generally more powerful for one-tailed selection under both backcross and F2 intercross situations. However, joint tests cannot be recommended for one-tailed selective genotyping if segregation distortion is suspected.  相似文献   

9.
A genomic screening to detect quantitative trait loci (QTL) affecting growth, carcass composition and meat quality traits was pursued. Two hundred nineteen microsatellite markers were genotyped on 176 of 620 (28%) progeny from a Brahman x Angus sire mated to mostly MARC III dams. Selective genotyping, based on retail product yield (%) and fat yield (%), was used to select individuals to be genotyped. Traits included in the study were birth weight (kg), hot carcass weight (kg), retail product yield, fat yield, marbling score (400 = slight00 and 500 = small00), USDA yield grade, and estimated kidney, heart and pelvic fat (%). The QTL were classified as significant when the expected number of false positives (ENFP) was less than 0.05 (F-statistic greater than 17.3), and suggestive when the ENFP was <1 (F-statistic between 10.2 and 17.3). A significant QTL (F = 19; ENFP = 0.02) was detected for marbling score at centimorgan (cM) 54 on chromosome 2. Suggestive QTL were detected for fat yield at 50 cM, for retail product yield at 53 cM, and for USDA yield grade at 63 cM on chromosome 1, for marbling score at 56 cM, for retail product yield at 70 cM, and for estimated kidney, heart and pelvic fat at 79 cM on chromosome 3, for marbling score at 44 cM, for hot carcass weight at 49 cM, and for estimated kidney, heart and pelvic fat at 62 cM on chromosome 16, and for fat yield at 35 cM on chromosome 17. Two suggestive QTL for birth weight were identified, one at 12 cM on chromosome 20 and the other at 56 cM on chromosome 21. An additional suggestive QTL was detected for retail product yield, for fat yield, and for USDA yield grade at 26 cM on chromosome 26. Results presented here represent the initial search for quantitative trait loci in this family. Validation of detected QTL in other populations will be necessary.  相似文献   

10.
We performed quantitative trait locus (QTL) analyses for egg production traits, including age at first egg (AFE) and egg production rates (EPR) measured every 4 weeks from 22 to 62 weeks of hen age, in a population of 421 F2 hens derived from an intercross between the Oh‐Shamo (Japanese Large Game) and White Leghorn breeds of chickens. Simple interval mapping revealed a main‐effect QTL for AFE on chromosome 1 and four main‐effect QTL for EPR on chromosomes 1 and 11 (three on chromosome 1 and one on chromosome 11) at the genome‐wide 5% levels. Among the three EPR QTL on chromosome 1, two were identified at the early stage of egg laying (26–34 weeks of hen age) and the remaining one was discovered at the late stage (54–58 weeks). The alleles at the two EPR QTL derived from the Oh‐Shamo breed unexpectedly increased the trait values, irrespective of the Oh‐Shamo being inferior to the White Leghorn in the trait. This suggests that the Oh‐Shamo, one of the indigenous Japanese breeds, is an untapped resource that is important for further improvement of current elite commercial laying chickens. In addition, six epistatic QTL were identified on chromosomes 2, 4, 7, 8, 17 and 19, where none of the above main‐effect QTL were located. This is the first example of detection of epistatic QTL affecting egg production traits. The main and epistatic QTL identified accounted for 4–8% of the phenotypic variance. The total contribution of all QTL detected for each trait to the phenotypic and genetic variances ranged from 4.1% to 16.9% and from 11.5% to 58.5%, respectively.  相似文献   

11.
The last few years have seen the development of large efforts for the analysis of genome function, especially in the context of genome variation. One of the most prominent directions has been the extensive set of studies on expression quantitative trait loci (eQTLs), namely, the discovery of genetic variants that explain variation in gene expression levels. Such studies have offered promise not just for the characterization of functional sequence variation but also for the understanding of basic processes of gene regulation and interpretation of genome-wide association studies. In this review, we discuss some of the key directions of eQTL research and its implications.  相似文献   

12.
A systems genetics approach combining pathway analysis of quantitative trait loci (QTL) and gene expression information has provided strong evidence for common pathways associated with genetic resistance to internal parasites. Gene data, collected from published QTL regions in sheep, cattle, mice, rats and humans, and microarray data from sheep, were converted to human Entrez Gene IDs and compared to the KEGG pathway database. Selection of pathways from QTL data was based on a selection index that ensured that the selected pathways were in all species and the majority of the projects overall and within species. Pathways with either up- and down-regulated genes, primarily up-regulated genes or primarily down-regulated genes, were selected from gene expression data. After comparing the data sets independently, the pathways from each data set were compared and the common set of pathways and genes was identified. Comparisons within data sets identified 21 pathways from QTL data and 66 pathways from gene expression data. Both selected sets were enriched with pathways involved in immune functions, disease and cell responses to signals. The analysis identified 14 pathways that were common between QTL and gene expression data, and four directly associated with IFNγ or MHCII, with 31 common genes, including three MHCII genes. In conclusion, a systems genetics approach combining data from multiple QTL and gene expression projects led to the discovery of common pathways associated with genetic resistance to internal parasites. This systems genetics approach may prove significant for the discovery of candidate genes for many other multifactorial, economically important traits.  相似文献   

13.
To dissect age-dependent quantitative trait loci (QTL) associated with growth and to examine changes in QTL effects over time, the Gompertz growth model was fitted to longitudinal live weight data on 788 Scottish Blackface lambs from nine half-sib families. QTL were mapped for model parameters and weekly live weights and growth rates using microsatellite markers on chromosomes 1, 2, 3, 5, 14, 18, 20 and 21. QTL significance (using α = 0.05 chromosome-wide significance thresholds, unless otherwise stated) varied with age, and those for growth rate occurred earlier than equivalent QTL for live weight. A chromosome 20 QTL for growth rate was significant from 4 to 9 weeks (maximum significance at 6 weeks) and for maximum growth rate. For live weight, this QTL was significant from 8 to 16 weeks (maximum significance at 12 weeks). A nominally significant chromosome 14 QTL was detected for growth rates from birth to week 2 in the same families and location as an 8-week weight QTL. In addition, at the same position on chromosome 14, a QTL was significant for growth rate for 17–28 weeks (maximum significance at 24 weeks). A chromosome 3 QTL was significant for weights at early ages (birth to week 4) and a growth rate QTL on chromosome 18 was significant from 8 to 12 weeks. Fitting growth curves allowed the combination of information from multiple measurements into a few biologically meaningful variables, and the detection of growth QTL that were not observed from analyses of raw weight data. These QTL describe distinct parts of an animal's growth curve trajectory, possibly enabling manipulation of this trajectory.  相似文献   

14.
This paper presents results from a mapping experiment to detect quantitative trait loci (QTL) for resistance to Haemonchus contortus infestation in merino sheep. The primary trait analysed was faecal worm egg count in response to artificial challenge at 6 months of age. In the first stage of the experiment, whole genome linkage analysis was used for broad-scale mapping. The animal resource used was a designed flock comprising 571 individuals from four half-sib families. The average marker spacing was about 20 cM. For the primary trait, 11 QTL (as chromosomal/family combinations) were significant at the 5% chromosome-wide level, with allelic substitution effects of between 0.19 and 0.38 phenotypic standard deviation units. In general, these QTL did not have a significant effect on faecal worm egg count recorded at 13 months of age. In the second stage of the experiment, three promising regions (located on chromosomes 1, 3 and 4) were fine-mapped. This involved typing more closely spaced markers on individuals from the designed flock as well as an additional 495 individuals selected from a related population with a deeper pedigree. Analysis was performed using a linkage disequilibrium–linkage approach, under additive, dominant and multiple QTL models. Of these, the multiple QTL model resulted in the most refined QTL positions, with resolutions of <10 cM achieved for two regions. Because of the moderate size of effect of the QTL, and the apparent age and/or immune status specificity of the QTL, it is suggested that a panel of QTL will be required for significant genetic gains to be achieved within industry via marker-assisted selection.  相似文献   

15.
Twinning in dairy cattle has been associated with many negative health and reproductive events that cause economic loss to the producer. Reports have suggested that twinning rates are increasing and that there may be a positive relationship between milk production and twinning frequency. Putative quantitative trait loci (QTL) for twinning and ovulation rate on bovine chromosomes 5, 7, 19 and 23 have been previously identified in other populations. The objective of this study was to detect and possibly confirm the existence and effects of these QTL in the North American Holstein population. Half-sib families of 20 North American Holstein sires with above average twinning rate predicted transmitting abilities (PTA) comprised the sample population under investigation. Twinning rate PTA values had been estimated from calving data. DNA extracted from semen samples was analysed using 45-61 microsatellite markers across the four chromosomes. Marker heterozygosity of the patriarchs averaged 62%. Evidence of twinning QTL was found in multiple families on chromosomes 5, 7 and 23 and in one family on chromosome 19. Four of the sires formed one three-generation family: one sire and three half-sib sons with sons of their own. This extended family was analysed with additional markers confirming a twinning QTL of significant size on chromosome 5.  相似文献   

16.

Background

Verticillium wilt (VW) and Fusarium wilt (FW), caused by the soil-borne fungi Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, respectively, are two most destructive diseases in cotton production worldwide. Root-knot nematodes (Meloidogyne incognita, RKN) and reniform nematodes (Rotylenchulus reniformis, RN) cause the highest yield loss in the U.S. Planting disease resistant cultivars is the most cost effective control method. Numerous studies have reported mapping of quantitative trait loci (QTLs) for disease resistance in cotton; however, very few reliable QTLs were identified for use in genomic research and breeding.

Results

This study first performed a 4-year replicated test of a backcross inbred line (BIL) population for VW resistance, and 10 resistance QTLs were mapped based on a 2895 cM linkage map with 392 SSR markers. The 10 VW QTLs were then placed to a consensus linkage map with other 182 VW QTLs, 75 RKN QTLs, 27 FW QTLs, and 7 RN QTLs reported from 32 publications. A meta-analysis of QTLs identified 28 QTL clusters including 13, 8 and 3 QTL hotspots for resistance to VW, RKN and FW, respectively. The number of QTLs and QTL clusters on chromosomes especially in the A-subgenome was significantly correlated with the number of nucleotide-binding site (NBS) genes, and the distribution of QTLs between homeologous A- and D- subgenome chromosomes was also significantly correlated.

Conclusions

Ten VW resistance QTL identified in a 4-year replicated study have added useful information to the understanding of the genetic basis of VW resistance in cotton. Twenty-eight disease resistance QTL clusters and 24 hotspots identified from a total of 306 QTLs and linked SSR markers provide important information for marker-assisted selection and high resolution mapping of resistance QTLs and genes. The non-overlapping of most resistance QTL hotspots for different diseases indicates that their resistances are controlled by different genes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1682-2) contains supplementary material, which is available to authorized users.  相似文献   

17.
The productivity and economic prosperity of sheep farming could benefit greatly from more effective methods of selection for year-round lambing. Identification of QTL for aseasonal reproduction in sheep could lead to more accurate selection and faster genetic improvement. One hundred and twenty microsatellite markers were genotyped on 159 backcross ewes from a Dorset × East Friesian crossbred pedigree. Interval mapping was undertaken to map the QTL underlying several traits describing aseasonal reproduction including the number of oestrous cycles, maximum level of progesterone prior to breeding, pregnancy status determined by progesterone level, pregnancy status determined by ultrasound, lambing status and number of lambs born. Seven chromosomes (1, 3, 12, 17, 19, 20 and 24) were identified to harbour putative QTL for one or more component traits used to describe aseasonal reproduction. Ovine chromosomes 12, 17, 19 and 24 harbour QTL significant at the 5% chromosome-wide level, chromosomes 3 and 20 harbour QTL that exceeded the threshold at the 1% chromosome-wide level, while the QTL identified on chromosome 1 exceeded the 1% experiment-wide significance level. These results are a first step towards understanding the genetic mechanism of this complex trait and show that variation in aseasonal reproduction is associated with multiple chromosomal regions.  相似文献   

18.
Mapping of quantitative trait loci on porcine chromosome 4   总被引:6,自引:0,他引:6  
A F2 population derived from a cross between European Large White and Chinese Meishan pigs was established in order to study the genetic basis of breed differences for growth and fat traits. Chromosome 4 was chosen for initial study as previous work had revealed quantitative trait loci (QTLs) on this chromosome affected growth and fat traits in a Wild Boar × Large White cross. Individuals in the F2 population were typed for nine markers spanning a region of approximately 124 c m . We found evidence for QTLs affecting growth between weaning and the end of test (additive effect: 43·4 g/day) and fat depth measured in the mid-back position (additive effect: 1·82 mm). There was no evidence of interactions between the QTLs and sex, grandparents or F1 sires, suggesting that the detected QTLs were fixed for alternative alleles in the Meishan and Large White breeds. Comparison of locations suggests that these QTLs could be the same as those found in the Wild Boar × Large White cross.  相似文献   

19.
20.
The National Agricultural Biotechnology Information Center (NABIC) in South Korea reconstructed a RiceQTLPro database for gene positional analysis and structure prediction of the chromosomes. This database is an integrated web-based system providing information about quantitative trait loci (QTL) markers in rice plant. The RiceQTLPro has the three main features namely, (1) QTL markers list, (2) searching of markers using keyword, and (3) searching of marker position on the rice chromosomes. This updated database provides 112 QTL markers information with 817 polymorphic markers on each of the 12 chromosomes in rice.

Availability

The database is available for free at http://nabic.rda.go.kr/gere/rice/geneticMap/  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号