首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic effects of habitat fragmentation may be undetectable because they are generally a recent event in evolutionary time or because of confounding effects such as historical bottlenecks and historical changes in species'' distribution. To assess the effects of demographic history on the genetic diversity and population structure in the Neotropical tree Dipteryx alata (Fabaceae), we used coalescence analyses coupled with ecological niche modeling to hindcast its distribution over the last 21 000 years. Twenty-five populations (644 individuals) were sampled and all individuals were genotyped using eight microsatellite loci. All populations presented low allelic richness and genetic diversity. The estimated effective population size was small in all populations and gene flow was negligible among most. We also found a significant signal of demographic reduction in most cases. Genetic differentiation among populations was significantly correlated with geographical distance. Allelic richness showed a spatial cline pattern in relation to the species'' paleodistribution 21 kyr BP (thousand years before present), as expected under a range expansion model. Our results show strong evidences that genetic diversity in D. alata is the outcome of the historical changes in species distribution during the late Pleistocene. Because of this historically low effective population size and the low genetic diversity, recent fragmentation of the Cerrado biome may increase population differentiation, causing population decline and compromising long-term persistence.  相似文献   

2.
Habitat fragmentation can lead to a decline of genetic diversity, a potential risk for the survival of natural populations. Fragmented populations can become highly differentiated due to reduced gene flow and genetic drift. A decline in number of individuals can result in lower reproductive fitness due to inbreeding effects. We investigated genetic variation within and between 11 populations of the rare and endangered plant Silene chlorantha in northeastern Germany to support conservation strategies. Genetic diversity was evaluated using AFLP techniques and the results were correlated to fitness traits. Fitness evaluation in nature and in a common garden approach was conducted. Our analysis revealed population differentiation was high and within population genetic diversity was intermediate. A clear population structure was supported by a Bayesian approach, AMOVA and neighbour-joining analysis. No correlation between genetic and geographic distance was found. Our results indicate that patterns of population differentiation were mainly caused by temporal and/or spatial isolation and genetic drift. The fitness evaluation revealed that pollinator limitation and habitat quality seem, at present, to be more important to reproductive fitness than genetic diversity by itself. Populations of S. chlorantha with low genetic diversity have the potential to increase in individual number if habitat conditions improve. This was detected in a single large population in the investigation area, which was formerly affected by bottleneck effects.  相似文献   

3.
Habitat size, quality and isolation determine the genetic structure and diversity of populations and may influence their evolutionary potential and vulnerability to stochastic events. Small and isolated populations are subject to strong genetic drift and can lose much of their genetic diversity due to stochastic fixation and loss of alleles. The mountain white‐eye Zosterops poliogaster, a cloud forest bird species, is exclusively found in the high mountains of East Africa. We analysed 13 polymorphic microsatellites for 213 individuals of this species that were sampled at different points in time in three mountain massifs differing in habitat size, isolation and habitat degradation. We analysed the genetic differentiation among mountain populations and estimated the effective population sizes. Our results indicate three mountain‐specific genetic clusters. Time cohorts did not show genetic divergences, suggesting that populations are large enough to prevent strong drift effects. Effective population sizes were higher in larger and geographically interconnected habitat patches. Our findings underline the relevance of ecological barriers even for mobile species and show the importance of investigating different estimators of population size, including both approaches based on single and multiple time‐points of sampling, for the inference of the demographic status of a population. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 828–836.  相似文献   

4.
We combined demographic and genetic data to evaluate the effects of habitat fragmentation on the population structure of the California red-backed vole (Clethrionomys californicus). We analysed variation in the mitochondrial DNA (mtDNA) control region and five nuclear microsatellite loci in small samples collected from two forest fragments and an unfragmented control site in 1990-91. We intensively sampled the same forest fragments and two different control sites in 1998 and 1999. Vole abundances fluctuated greatly at sizes below 50 individuals per fragment. Fragment populations had significantly lower mtDNA allelic diversity than controls, but not nuclear heterozygosity or numbers of alleles. The use of only trapping and/or mtDNA marker data would imply that fragment populations are at least partially isolated and vulnerable to inbreeding depression. In contrast, the abundance estimates combined with microsatellite data show that small fragment populations must be linked to nearby forests by high rates of migration. These results provide evidence for the usefulness of combining genetic and demographic data to understand nonequilibrium population structure in recently fragmented habitats.  相似文献   

5.
There is widespread concern regarding the impacts of anthropogenic activities on connectivity among populations of plants and animals, and understanding how contemporary and historical processes shape metapopulation dynamics is crucial for setting appropriate conservation targets. We used genetic data to identify population clusters and quantify gene flow over historical and contemporary time frames in the Diamondback Terrapin (Malaclemys terrapin). This species has a long and complicated history with humans, including commercial overharvesting and subsequent translocation events during the early twentieth century. Today, terrapins face threats from habitat loss and mortality in fisheries bycatch. To evaluate population structure and gene flow among Diamondback Terrapin populations in the Chesapeake Bay region, we sampled 617 individuals from 15 localities and screened individuals at 12 polymorphic microsatellite loci. Our goals were to demarcate metapopulation structure, quantify genetic diversity, estimate effective population sizes, and document temporal changes in gene flow. We found that terrapins in the Chesapeake Bay region harbour high levels of genetic diversity and form four populations. Effective population sizes were variable. Among most population comparisons, estimates of historical and contemporary terrapin gene flow were generally low (m ≈ 0.01). However, we detected a substantial increase in contemporary gene flow into Chesapeake Bay from populations outside the bay, as well as between two populations within Chesapeake Bay, possibly as a consequence of translocations during the early twentieth century. Our study shows that inferences across multiple time scales are needed to evaluate population connectivity, especially as recent changes may identify threats to population persistence.  相似文献   

6.
The genetic structures of past human populations are obscured by recent migrations and expansions and have been observed only indirectly by inference from modern samples. However, the unique link between a heritable cultural marker, the patrilineal surname, and a genetic marker, the Y chromosome, provides a means to target sets of modern individuals that might resemble populations at the time of surname establishment. As a test case, we studied samples from the Wirral Peninsula and West Lancashire, in northwest England. Place-names and archaeology show clear evidence of a past Viking presence, but heavy immigration and population growth since the industrial revolution are likely to have weakened the genetic signal of a 1,000-year-old Scandinavian contribution. Samples ascertained on the basis of 2 generations of residence were compared with independent samples based on known ancestry in the region plus the possession of a surname known from historical records to have been present there in medieval times. The Y-chromosomal haplotypes of these 2 sets of samples are significantly different, and in admixture analyses, the surname-ascertained samples show markedly greater Scandinavian ancestry proportions, supporting the idea that northwest England was once heavily populated by Scandinavian settlers. The method of historical surname-based ascertainment promises to allow investigation of the influence of migration and drift over the last few centuries in changing the population structure of Britain and will have general utility in other regions where surnames are patrilineal and suitable historical records survive.  相似文献   

7.
Chiucchi JE  Gibbs HL 《Molecular ecology》2010,19(24):5345-5358
Populations of endangered taxa in recently fragmented habitats often show high levels of genetic structure, but the role that contemporary versus historical processes play in generating this pattern is unclear. The eastern massasauga rattlesnake (Sistrurus c. catenatus) is an endangered snake that presently occurs throughout central and eastern North America in a series of populations that are isolated because of habitat fragmentation and destruction. Here, we use data from 19 species-specific microsatellite DNA loci to assess the levels of genetic differentiation, genetic effective population size, and contemporary and historical levels of gene flow for 19 populations sampled across the range of this snake. Eastern massasaugas display high levels of genetic differentiation (overall θ(Fst) = 0.21) and a Bayesian clustering method indicates that each population represents a unique genetic cluster even at regional spatial scales. There is a twofold variation in genetically effective population sizes but little genetic evidence that populations have undergone recent or historical declines in size. Finally, both contemporary and historical migration rates among populations were low and similar in magnitude even for populations located <7 km apart. A test of alternate models of population history strongly favours a model of long-term drift-migration equilibrium over a recent isolation drift-only model. These results suggest that recent habitat fragmentation has had little effect on the genetic characteristics of these snakes, but rather that this species has historically existed in small isolated populations that may be resistant to the long-term negative effects of inbreeding.  相似文献   

8.
We examined the effects of habitat discontinuities on gene flow among puma (Puma concolor) populations across the southwestern USA. Using 16 microsatellite loci, we genotyped 540 pumas sampled throughout the states of Utah, Colorado, Arizona, and New Mexico, where a high degree of habitat heterogeneity provides for a wide range of connective habitat configurations between subpopulations. We investigated genetic structuring using complementary individual- and population-based analyses, the latter employing a novel technique to geographically cluster individuals without introducing investigator bias. The analyses revealed genetic structuring at two distinct scales. First, strikingly strong differentiation between northern and southern regions within the study area suggests little migration between them. Second, within each region, gene flow appears to be strongly limited by distance, particularly in the presence of habitat barriers such as open desert and grasslands. Northern pumas showed both reduced genetic diversity and greater divergence from a hypothetical ancestral population based on Bayesian clustering analyses, possibly reflecting a post-Pleistocene range expansion. Bayesian clustering results were sensitive to sampling density, which may complicate inference of numbers of populations when using this method. The results presented here build on those of previous studies, and begin to complete a picture of how different habitat types facilitate or impede gene flow among puma populations.  相似文献   

9.
Understanding the consequences of habitat disturbance on mating patterns although pollen and seed dispersal in forest trees has been a long‐standing theme of forest and conservation genetics. Forest ecosystems face global environmental pressures from timber exploitation to genetic pollution and climate change, and it is therefore essential to comprehend how disturbances may alter the dispersal of genes and their establishment in tree populations in order to formulate relevant recommendations for sustainable resource management practices and realistic predictions of potential adaptation to climate change by means of range shift or expansion (Kremer et al. 2012 ). However, obtaining reliable evidence of disturbance‐induced effects on gene dispersal processes from empirical evaluation of forest tree populations is difficult. Indeed, tree species share characteristics such as high longevity, long generation time and large reproductive population size, which may impede the experimenter's ability to assess parameters at the spatial and time scales at which any change may occur (Petit and Hampe 2006 ). It has been suggested that appropriate study designs should encompass comparison of populations before and after disturbance as well as account for demonstrated variation in conspecific density, that is, the spatial distribution of mates, and forest density, including all species and relating to alteration in landscape openness (Bacles & Jump 2011 ). However, more often than not, empirical studies aiming to assess the consequences of habitat disturbance on genetic processes in tree populations assume rather than quantify a change in tree densities in forests under disturbance and generally fail to account for population history, which may lead to inappropriate interpretation of a causal relationship between population genetic structure and habitat disturbance due to effects of unmonitored confounding variables (Gauzere et al. 2013). In this issue, Shohami and Nathan ( 2014 ) take advantage of the distinctive features of the fire‐adapted wind‐pollinated Aleppo pine Pinus halepensis (Fig. 1) to provide an elegant example of best practice. Thanks to long‐term monitoring of the study site, a natural stand in Israel, Shohami and Nathan witnessed the direct impact of habitat disturbance, here taking the shape of fire, on conspecific and forest densities and compared pre‐ and postdisturbance mating patterns estimated from cones of different ages sampled on the same surviving maternal individuals (Fig. 2). This excellent study design is all the more strong that Shohami and Nathan took further analytical steps to account for confounding variables, such as historical population genetic structure and possible interannual variation in wind conditions, thus giving high credibility to their findings of unequivocal fire‐induced alteration of mating patterns in P. halepensis. Most notably, the authors found, at the pollen pool level, a disruption of local genetic structure which, furthermore, they were able to attribute explicitly to enhanced pollen‐mediated gene immigration into the low‐density fire‐disturbed stand. This cleverly designed research provides a model approach to be followed if we are to advance our understanding of disturbance‐induced dispersal and genetic change in forest trees.  相似文献   

10.
Despite only limited Pleistocene glacial activity in the southern hemisphere, temperate forest species experienced complex distributional changes resulting from the combined effects of glaciation, sea level change and increased aridity. The effects of these historical processes on population genetic structure are now overlain by the effects of contemporary habitat modification. In this study, 10 microsatellites and 629 bp of the mitochondrial control region were used to assess the effects of historical forest fragmentation and recent anthropogenic habitat change on the broad-scale population genetic structuring of a southern temperate marsupial, the Tasmanian pademelon. A total of 200 individuals were sampled from seven sites across Tasmania and two islands in Bass Strait. High mitochondrial and nuclear genetic diversity indicated the maintenance of large historical population sizes. There was weak phylogeographical structuring of haplotypes, although all King Island haplotypes and three Tasmanian haplotypes formed a divergent clade implying the mid-Pleistocene isolation of a far northwestern population. Both the mitochondrial and nuclear data indicated a division of Tasmanian populations into eastern and western regions. This was consistent with a historical barrier resulting from increased aridity in the lowland 'midlands' region during glacial periods, and with a contemporary barrier resulting from recent habitat modification in that region. In Tasmania, gene flow appears to have been relatively unrestricted during glacial maxima in the west, while in the east there was evidence for historical expansion from at least one large glacial refuge and recolonization of Flinders Island.  相似文献   

11.
We investigated plant reproduction in relation to genetic structure, population size, and habitat quality in 13 populations of the rare biennial plant Pedicularis palustris with 3-28500 flowering individuals. We used AFLP (amplified fragment length polymorphism) profiles to analyze genetic similarities among 129 individuals (3-15 per population). In a cluster analysis of genetic similarities most individuals (67%) were arranged in population-specific clusters. Analysis of molecular variance indicated significant genetic differentiation among populations and among and within subpopulations (P < 0.001). Gene flow (N(e) m) was low (0.298). On average, plants produced 55 capsules, 17 seeds per fruit, and 42 seedlings in the following growing season. The number of seeds per capsule was independent of population size and of genetic variability. In contrast, the number of capsules per plant (P < 0.05) and the number of seedlings per plant (P < 0.05) were positively correlated with population size. The relation between population size and the number of seeds per plant was not significant (P = 0.075). The number of capsules and of seeds and seedlings per plant (P < 0.01) were positively correlated with genetic variability. Genetic variability was independent of actual population size, suggesting that historical population processes have to be taken into account, too. Stepwise multiple regressions revealed additional significant relationships of habitat parameters (soil pH, C:N ratio), vegetation composition, and standing crop on reproductive components. We conclude that populations of P. palustris are genetically isolated and that reproductive success most likely is influenced by population size, genetic variability, and habitat quality. Management strategies such as moderate grazing, mowing, and artificial gene flow should endeavor to increase population size as well as genetic variation.  相似文献   

12.
The amount of dispersal that occurs among populations can be limited by landscape heterogeneity, which is often due to both natural processes and anthropogenic activity leading to habitat loss or fragmentation. Understanding how populations are structured and mapping existing dispersal corridors among populations is imperative to both determining contemporary forces mediating population connectivity, and informing proper management of species with fragmented populations. Furthermore, the contemporary processes mediating gene flow across heterogeneous landscapes on a large scale are understudied, particularly with respect to widespread species. This study focuses on a widespread game bird, the Ruffed Grouse (Bonasa umbellus), for which we analyzed samples from the western extent of the range. Using three types of genetic markers, we uncovered multiple factors acting in concert that are responsible for mediating contemporary population connectivity in this species. Multiple genetically distinct groups were detected; microsatellite markers revealed six groups, and a mitochondrial marker revealed four. Many populations of Ruffed Grouse are genetically isolated, likely by macrogeographic barriers. Furthermore, the addition of landscape genetic methods not only corroborated genetic structure results, but also uncovered compelling evidence that dispersal resistance created by areas of unsuitable habitat is the most important factor mediating population connectivity among the sampled populations. This research has important implications for both our study species and other inhabitants of the early successional forest habitat preferred by Ruffed Grouse. Moreover, it adds to a growing body of evidence that isolation by resistance is more prevalent in shaping population structure of widespread species than previously thought.  相似文献   

13.
Although the grey seal Halichoerus grypus is one of the most familiar and intensively studied of all pinniped species, its global population structure remains to be elucidated. Little is also known about how the species as a whole may have historically responded to climate‐driven changes in habitat availability and anthropogenic exploitation. We therefore analysed samples from over 1500 individuals collected from 22 colonies spanning the Western and Eastern Atlantic and the Baltic Sea regions, represented by 350 bp of the mitochondrial hypervariable region and up to nine microsatellites. Strong population structure was observed at both types of marker, and highly asymmetrical patterns of gene flow were also inferred, with the Orkney Islands being identified as a source of emigrants to other areas in the Eastern Atlantic. The Baltic and Eastern Atlantic regions were estimated to have diverged a little over 10 000 years ago, consistent with the last proposed isolation of the Baltic Sea. Approximate Bayesian computation also identified genetic signals consistent with postglacial population expansion across much of the species range, suggesting that grey seals are highly responsive to changes in habitat availability.  相似文献   

14.
Small populations in fragmented habitats can lose genetic variation through drift and inbreeding. The huemul (Hippocamelus bisulcus) is an endangered deer endemic to the southern Andes of Chile and Argentina. Huemul numbers have declined by 99% and its distribution by 50% since European settlement. The total population is estimated at less than 2,000 individuals and is highly fragmented. At one isolated population in Chilean Patagonia we sampled 56 individuals between 2005 and 2007 and genotyped them at 14 microsatellite loci. Despite low genetic variability (average 2.071 alleles/locus and average H O of 0.341), a low inbreeding coefficient (F IS) of 0.009 suggests nearly random mating. Population genetic bottleneck tests suggest both historical and contemporary reductions in population size. Simulations indicated that the population must be maintained at 75% of the current size of 120 individuals to maintain 90% of its current genetic diversity over the next 100 years. Potential management strategies to maintain genetic variability and limit future inbreeding include the conservation and establishment of habitat corridors to facilitate gene flow and the enlargement of protected areas to increase effective population size.  相似文献   

15.
Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout ( Salmo trutta ) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations.  相似文献   

16.
Population genetic studies carried out on penaeid shrimps have disclosed different patterns of population subdivision, revealing new aspects of shrimp biology as well as the effects of historical contingency molding those patterns. However, the stability of observed allele frequencies over time still remains untested. The objective of this article is to show the analysis of the temporal variation of allozymes in a shrimp species inhabiting Cuba which proves that the genetic structure of this species could significantly change in time. The study involves four populations of Farfantepenaeus notialis sampled in a period of 8 years. The significant statistics obtained from partitions observed in 1995 were not detected in 2003 (as suggested by AMOVA and F(ST)), whereas temporal genetic differentiation and heterozygosity became highly significant. The results strongly suggest that the effect of migrations could be the cause for the loss of F. notialis genetic structure in 2003. It is therefore imperative to call attention on the vulnerability of these populations when facing unstable environmental and habitat conditions.  相似文献   

17.
Over most of their natural northern Pacific Ocean range, pink salmon (Oncorhynchus gorbuscha) spawn in a habitat that was repeatedly and profoundly affected by Pleistocene glacial advances. A strictly two-year life cycle of pink salmon has resulted in two reproductively isolated broodlines, which spawn in alternating years and evolved as temporal replicates of the same species. To study the influence of historical events on phylogeographical and population genetic structure of the two broodlines, we first reconstructed a fine-scale mtDNA haplotype genealogy from a sample of 80 individuals and then determined the geographical distribution of the major genealogical assemblages for 718 individuals sampled from nine Alaskan and eastern Asian even- and nine odd-year pink salmon populations. Analysis of restriction site states in seven polymerase chain reaction (PCR)-amplified mtDNA regions (comprising 97% of the mitochondrial genome) using 13 endonucleases resolved 38 haplotypes, which clustered into five genealogical lineages that differed from 0.065 to 0.225% in net sequence divergence. The lineage sorting between broodlines was incomplete, which suggests a recent common ancestry. Within each lineage, haplotypes exhibited star-like genealogies indicating recent population growth. The depth of the haplotype genealogy is shallow ( approximately 0.5% of nucleotide sequence divergence) and probably reflects repeated decreases in population size due to Pleistocene glacial advances. Nested clade analysis (NCA) of geographical distances showed that the geographical distribution observed for mitochondrial DNA (mtDNA) haplotypes resulted from alternating influences of historical range expansions and episodes of restricted dispersal. Analyses of molecular variance showed weak geographical structuring of mtDNA variation, except for the strong subdivision between Asian and Alaskan populations within the even-year broodline. The genetic similarities observed among and within geographical regions probably originated from postglacial recolonizations from common sources rather than extensive gene flow. The phylogeographical and population genetic structures differ substantally between broodlines. This can be explained by stochastic lineage sorting in glacial refugia and perhaps different recolonization routes in even- and odd-year broodlines.  相似文献   

18.
Hu Y  Guo Y  Qi D  Zhan X  Wu H  Bruford MW  Wei F 《Molecular ecology》2011,20(13):2662-2675
Clarification of the genetic structure and population history of a species can shed light on the impacts of landscapes, historical climate change and contemporary human activities and thus enables evidence‐based conservation decisions for endangered organisms. The red panda (Ailurus fulgens) is an endangered species distributing at the edge of the Qinghai‐Tibetan Plateau and is currently subject to habitat loss, fragmentation and population decline, thus representing a good model to test the influences of the above‐mentioned factors on a plateau edge species. We combined nine microsatellite loci and 551 bp of mitochondrial control region (mtDNA CR) to explore the genetic structure and demographic history of this species. A total of 123 individuals were sampled from 23 locations across five populations. High levels of genetic variation were identified for both mtDNA and microsatellites. Phylogeographic analyses indicated little geographic structure, suggesting historically wide gene flow. However, microsatellite‐based Bayesian clustering clearly identified three groups (Qionglai‐Liangshan, Xiaoxiangling and Gaoligong‐Tibet). A significant isolation‐by‐distance pattern was detected only after removing Xiaoxiangling. For mtDNA data, there was no statistical support for a historical population expansion or contraction for the whole sample or any population except Xiaoxiangling where a signal of contraction was detected. However, Bayesian simulations of population history using microsatellite data did pinpoint population declines for Qionglai, Xiaoxiangling and Gaoligong, demonstrating significant influences of human activity on demography. The unique history of the Xiaoxiangling population plays a critical role in shaping the genetic structure of this species, and large‐scale habitat loss and fragmentation is hampering gene flow among populations. The implications of our findings for the biogeography of the Qinghai‐Tibetan Plateau, subspecies classification and conservation of red pandas are discussed.  相似文献   

19.
The giant panda is an example of a species that has faced extensive historical habitat fragmentation, and anthropogenic disturbance and is assumed to be isolated in numerous subpopulations with limited gene flow between them. To investigate the population size, health, and connectivity of pandas in a key habitat area, we noninvasively collected a total of 539 fresh wild giant panda fecal samples for DNA extraction within Wolong Nature Reserve, Sichuan, China. Seven validated tetra‐microsatellite markers were used to analyze each sample, and a total of 142 unique genotypes were identified. Nonspatial and spatial capture–recapture models estimated the population size of the reserve at 164 and 137 individuals (95% confidence intervals 153–175 and 115–163), respectively. Relatively high levels of genetic variation and low levels of inbreeding were estimated, indicating adequate genetic diversity. Surprisingly, no significant genetic boundaries were found within the population despite the national road G350 that bisects the reserve, which is also bordered with patches of development and agricultural land. We attribute this to high rates of migration, with four giant panda road‐crossing events confirmed within a year based on repeated captures of individuals. This likely means that giant panda populations within mountain ranges are better connected than previously thought. Increased development and tourism traffic in the area and throughout the current panda distribution pose a threat of increasing population isolation, however. Maintaining and restoring adequate habitat corridors for dispersal is thus a vital step for preserving the levels of gene flow seen in our analysis and the continued conservation of the giant panda meta‐population in both Wolong and throughout their current range.  相似文献   

20.

Australian arboreal mammals are experiencing significant population declines, particularly due to land clearing and resulting habitat fragmentation. The squirrel glider, Petaurus norfolcensis, is a threatened species in New South Wales, with a stronghold population in the Lake Macquarie Local Government Area (LGA) where fragmentation due to urbanization is an ongoing problem for the species conservation. Here we report on the use of squirrel glider mitochondrial (385 bp cytochrome b gene, 70 individuals) and nuclear DNA (6,834 SNPs, 87 individuals) markers to assess their population genetic structure and connectivity across 14 locations sampled in the Lake Macquarie LGA. The mitochondrial DNA sequences detected evidence of a historical genetic bottleneck, while the genome-wide SNPs detected significant population structure in the Lake Macquarie squirrel glider populations at scales as fine as one kilometer. There was no evidence of inbreeding within patches, however there were clear effects of habitat fragmentation and biogeographical barriers on gene flow. A least cost path analysis identified thin linear corridors that have high priority for conservation. These areas should be protected to avoid further isolation of squirrel glider populations and the loss of genetic diversity through genetic drift.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号