首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The chromosome numbers and morphology in 92 populations belonging to 49 species and three varieties in the genus Delphinium L. (Ranunculaceae), mostly from the Hengduan Mountains region of south‐west China, were studied. Forty seven species and three varieties were diploid, with 2n = 16, one species was tetraploid, with 2n = 32, and one species had diploid and tetraploid cytotypes. Three species had B chromosomes, representing the first time the occurrence of B chromosomes has been reported in the genus. The karyotypes of all the diploid species were quite uniform, commonly bimodal, and usually consisted of one pair of large median‐centromeric (m), one pair of large submedian‐centromeric (sm), five pairs of medium‐sized subterminal‐centromeric (st), and one pair of smaller sm (rarely st) chromosomes. The low incidence of polyploids in Delphinium from the Hengduan Mountains region indicates that polyploidy has played a minor role in the speciation of this highly diversified genus in the region. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 172–188.  相似文献   

3.
Schoenus (Cyperaceae) has holocentric chromosomes. Chromosome numbers were counted and nuclear DNA amounts were measured for all the New Zealand species of the genus. Chromosome numbers ranged from 2n = 8 to c. 2n = 90. Two chromosome races, with 2n = 28 and 2n = 56, were found in S. pauciflorus. Flow cytometry using propidium iodide‐stained nuclei was used to measure genome size. A 14.8‐fold variation in 2C DNA content was found, with values ranging from 1.33 to 19.71 pg/2C nucleus. Phylogenetic trees based on sequence variation in the internal transcribed spacer (ITS) region of the 45S ribosomal DNA locus were constructed using several phylogenetic models to reveal possible evolutionary relationships among the New Zealand Schoenus spp. and a sample of Australian Schoenus spp. Analysis revealed heterogeneity of chromosome number, size and DNA C value within clades. Meiosis in four species showed only bivalent formation at metaphase I. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 555–564.  相似文献   

4.
Polyploidy is a fundamental mechanism in evolution, but is hard to detect in taxa with agmatoploidy or aneuploidy. We tested whether a combination of chromosome counting, microsatellite analyses and flow cytometric measurements represents a suitable approach for the detection of basic chromosome numbers and ploidy in Kobresia (Cyperaceae). Chromosome counting resulted in 2n = 64 for Kobresia pygmaea and K. cercostachys, 2n = 58 and 64 for K. myosuroides, and 2n = 72 for K. simpliciuscula. We characterized eight microsatellite loci for K. pygmaea, which gave a maximum of four alleles per individual. Cross‐species amplification was tested in 26 congeneric species and, on average, six of eight loci amplified successfully. Using flow cytometry, we confirmed tetraploidy in K. pygmaea. Basic chromosome numbers and ploidy were inferred from chromosome counts and the maximum number of alleles per locus. We consider the basic numbers as x = 16 and 18, with irregularities derived from agmatoploidy and aneuploidy. Across all Kobresia taxa, ploidy ranged from diploid up to heptaploid. The combination of chromosome counts and microsatellite analyses is an ideal method for the determination of basic chromosome numbers and for inferring ploidy, and flow cytometry is a suitable tool for the identification of deviating cytotypes. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 22–35.  相似文献   

5.
Allium croaticum , a new species from the island of Vis in Central Dalmatia (Croatia) is described and illustrated. Its relationships with allied species belonging to the A. stamineum group (Allium section Codonoprasum) are discussed. It is a diploid species (2n = 16), colonizing calcareous screes and flowering in early summer. Its morphology, leaf anatomy, karyology, palynology, ecology and taxonomic position are examined. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 106–114.  相似文献   

6.
Combining molecular cytogenetics and phylogenetic modelling of chromosome number change can shed light on the types of evolutionary changes that may explain the haploid numbers observed today. Applied to the monocot family Araceae, with chromosome numbers of 2n = 8 to 2n = 160, this type of approach has suggested that descending dysploidy has played a larger role than polyploidy in the evolution of the current chromosome numbers. To test this, we carried out molecular cytogenetic analyses in 14 species from 11 genera, using probes for telomere repeats, 5S rDNA and 45S rDNA and a plastid phylogenetic tree covering the 118 genera of the family, many with multiple species. We obtained new chromosome counts for six species, modelled chromosome number evolution using all available counts for the family and carried out fluorescence in situ hybridization with three probes (5S rDNA, 45S rDNA and Arabidopsis‐like telomeres) on 14 species with 2n = 14 to 2n = 60. The ancestral state reconstruction provides support for a large role of descending dysploidy in Araceae, and interstitial telomere repeats (ITRs) were detected in Anthurium leuconerum, A. wendlingeri and Spathyphyllum tenerum, all with 2n = 30. The number of ITR signals in Anthurium (up to 12) is the highest so far reported in angiosperms, and the large repeats located in the pericentromeric regions of A. wendlingeri are of a type previously reported only from the gymnosperms Cycas and Pinus. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 15–26.  相似文献   

7.
Considerable karyotypic differentiation has occurred within the group of taxa comprising the eastern North American members of the genus Claytonia. Patterns of karyotypic differentiation are congruent with evolutionary groupings based on flavonoid chemistry, particularly at the diploid level. The 2n = 16 diploid chemotype found in both C. caroliniana and C. virginica possesses a karyotype composed entirely of metacentric chromosomes, while acrocentric chromosomes predominate in the karyotypes of the 2n = 12 and 2n = 14 diploid chemotypes of C. virginica. The 2n = 16 diploid also has a karyotype significantly larger than those of the other diploid cytotypes. Polyploid karyotypes of both species show varying degrees of divergence from their presumed diploid progenitors.  相似文献   

8.
Allium brussalisii , from Mount Parnitha near Athens (Sterea Hellas, Greece), is described as a species new to science and compared with related species of Allium section Codonoprasum and Allium section Brevispatha. It is a diploid species (2n = 2x = 16) that flowers in early autumn. On the basis of its unilateral and more or less entire spathe and the simple filaments, it resembles species of Allium section Brevispatha; however, its sectional taxonomy remains unclear as, on the basis of several other morphological, cytological, and ecological characteristics, it also resembles species of Allium section Codonoprasum. The new species is presently known only from the type locality and is of particular interest for the phylogeny of the genus. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 140–146.  相似文献   

9.
For the large Neotropical plant family Bromeliaceae, we provide new data on chromosome numbers, cytological features and genome size estimations, and combine them with data available in the literature. Root‐tip chromosome counts for 46 species representing four subfamilies and a literature review of previously published data were carried out. Propidium iodide staining and flow cytometry were used to estimate absolute genome sizes in five subfamilies of Bromeliaceae, sampling 28 species. Most species were diploid with 2n = 50 in Bromelioideae, Puyoideae and Pitcairnioideae, followed by 2n = 48 observed mainly in Tillandsioideae. Individual chromosome sizes varied more than tenfold, with the largest chromosomes observed in Tillandsioideae and the smallest in Bromelioideae. Genome sizes (2C‐values) varied from 0.85 to 2.23 pg, with the largest genomes in Tillandsioideae. Genome evolution in Bromeliaceae relies on two main mechanisms: polyploidy and dysploidy. With the exception of Tillandsioideae, polyploidy is positively correlated with genome size. Dysploidy is suggested as the mechanism responsible for the generation of the derived chromosome numbers, such as 2n = 32/34 or 2n = 48. The occurrence of B chromosomes in the dysploid genus Cryptanthus suggests ongoing speciation processes closely associated with chromosome rearrangements. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 349–368.  相似文献   

10.
Neotropical Marcgraviaceae comprise about seven genera and 130 species of lianas and shrubs. They predominantly occur in lowland or montane rainforests and are characterized by a variety of pollination systems. Early classifications subdivided Marcgraviaceae into subfamilies Marcgravioideae and Noranteoideae, a concept supported by molecular data. Using flow cytometry and chromosome numbers, we investigated the role of genome size and polyploidization in the evolution of Marcgraviaceae and how genome sizes are distributed between the proposed infrafamilial groups. To do this we determined genome sizes and chromosome counts for six genera and 22 species for the first time. Our study supports the subfamilial classification of the family, revealing contrasting genome sizes in Noranteoideae (2C = 5.5–21.5 pg) and Marcgravioideae (2C = 2.3–6.2 pg). Polyploidy is considered to be the main source of genome size variation as in each subfamily the higher nuclear DNA amounts were associated with higher ploidy. In addition, genome size changes independent of polyploidy were also observed in some genera, suggesting an additional role for changes in repetitive DNA abundance in the evolution of Marcgraviaceae. A high chromosome base number (x = 18; 2n = 36 to ~70) points to an undetected lower diploid level or to palaeopolyploidy. Marcgraviaceae show a remarkable (nine‐fold) variation in genome size, and several Noranteoideae have genome sizes among the highest reported for tropical woody angiosperms worldwide. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 1–14.  相似文献   

11.
Turner, B. L., and Olin S. Fearing. (U. Texas, Austin.) Chromosome numbers in the Leguminosae. III. Species of the Southwestern United States and Mexico. Amer. Jour. Bot. 47(7) : 603–608. Illus. 1960.—Chromosome counts for 43 species of the Leguminosae from the southwestern United States and Mexico have been reported. These include first reports for 42 taxa of which 16 are for the subfamily Mimosoideae. Olneya tesota (2n = 18) is the only new generic count listed. Chromosome reports of particular significance include a single polyploid count for a North American species of Acacia, as well as diploid and tetraploid counts for closely related taxa in this genus. Four species of the genus Schrankia were found to be diploid with In = 26, indicating a base of x = 13 instead of the x = 8 reported by some previous workers. Leucaena pulverulenta was found to have a diploid count of 2n = 56 indicating a base of x = 14.  相似文献   

12.
Nicotiana tabacum (tobacco, 2n = 4x = 48) is an allotetraploid with 24 S‐genome chromosomes (from a diploid related to N. sylvestris) and 24 T‐genome chromosomes (from a diploid related to N. tomentosiformis). The BY‐2 suspension cell culture, derived from N. tabacum cultivar Bright Yellow 2, has been used extensively for research in molecular and cell biology for almost 40 years; a Web of Knowledge search reveals that it has been used over 150 times since 2008 alone, largely for cell cycle and plant physiology studies. However, we show that this culture is unstable and, as with other long‐term cultures, exists as a community of cells with different karyotypes reflected in different chromosome numbers, morphologies and distributions of satellite repeats, At least one rearranged chromosome type was found in all cells investigated in detail. In comparison with N. tabacum, one satellite repeat, NTRS, has become dispersed across several chromosomes and there is complete homogenization of 35S rRNA genes towards T‐genome type rDNA units. Karyotype divergence should be considered when using BY‐2 cells for plant physiology or cell cycle/development studies in the future. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 459–471.  相似文献   

13.
Original chromosome determinations are presented for 20 American Lupinus taxa, including, for the first time, unifoliolate species, together with first data on meiotic behaviour and pollen fertility for some South American species. Most of the Brazilian multifoliolate L. lanatus, L. rubriflorus, L. multiflorus, L. paranensis, L. bracteolaris and L. reitzii and unifoliolate L. crotalarioides, L. guaraniticus and L. velutinus accessions analysed presented regular chromosome pairing. Meiotic indexes and estimations of pollen viability were higher than 90% for all species and accessions analysed, reflecting the generally regular meiotic behaviour of these plants. Chromosome numbers were determined for the first time for the eastern South‐American species L. guaraniticus, L. crotalarioides, L. paranensis, L. paraguariensis and L. velutinus (n = 18 or 2n = 36) and for the Andean L. ballianus, L. eanophyllus, L. huaronensis, L. semperflorens, plus another eight taxa (2n = 48) from Peru and Bolivia, and L. bandelierae (2n = 36) from Bolivia. Chromosome numbers were confirmed for L. lanatus, L. rubriflorus (2n = 36), L. bracteolaris (2n = 34) and L. microphyllus (2n = 48). In the three accessions of the North American unifoliolate species, L. cumulicola and L. villosus, a chromosome number (2n = 52) previously unknown among American taxa was found. The results of the study, plus published data, support the suggestions that south‐eastern South American species are a group cytologically differentiated from the Andean as well as from most other American ones, and that the Brazilian and the North American unifoliolate Lupinus had independent origins. © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 150 , 229–240.  相似文献   

14.
This paper presents the mitotic chromosome numbers of 18 species of Bromeliaceae. The diploid number 2n = 50 was observed in Aechmea comata, A. caudata, A. correia‐araujoi, A. recurvata, A. marauensis, A. bicolor, A. pineliana, Hohenbergia catingae, H. blanchetti, Alcantarea imperialis, Al. nahoumi, Neoregelia tenebrosa, Nidularium lyman‐smithii, N. scheremetiewii, N. innocentii var. innocentii, and N. innocentii × Neoregelia johannis hybrid, whereas 2n = 34 was observed in Cryptanthus maritimus and C. warren‐loosei. All of the determinations presented in this study are previously unpublished, except A. comata and H. catingae. These results confirm x = 25 as the basic number for the family and x = 17 as a secondary basic number probably generated by decreasing dysploidy. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 189–193.  相似文献   

15.
The karyotypes of 16 populations belonging to eight species of Polygonatum from China were analysed. The chromosome numbers and karyotypes of P. omeiense, P. adnatum and P. hirtellum and the diploidy of P. tessellatum are reported for the first time. The basic chromosome numbers were x = 11, 13, 14 and 15. Based on Stebbins' karyotypic classification, the four karyotypes were recognized as 2B, 3B, 2C and 3C. Considering the arm ratio and individual chromosome size, it was concluded that the possible evolutionary trend of the karyotypes in Polygonatum was from 2B to 3C. The results show that: (1) satellite heterozygosity occurs in many species of this genus; (2) mixoploidy and B chromosomes occur in some species; and (c) karyotypes are different in different species and even in different populations of the same species. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 245–254.  相似文献   

16.
In vertebrates, genome size has been shown to correlate with nuclear and cell sizes, and influences phenotypic features, such as brain complexity. In three different anuran families, advertisement calls of polyploids exhibit longer notes and intervals than diploids, and difference in cellular dimensions have been hypothesized to cause these modifications. We investigated this phenomenon in green toads (Bufo viridis subgroup) of three ploidy levels, in a different call type (release calls) that may evolve independently from advertisement calls, examining 1205 calls, from ten species, subspecies, and hybrid forms. Significant differences between pulse rates of six diploid and four polyploid (3n, 4n) green toad forms across a range of temperatures from 7 to 27 °C were found. Laboratory data supported differences in pulse rates of triploids vs. tetraploids, but failed to reach significance when including field recordings. This study supports the idea that genome size, irrespective of call type, phylogenetic context, and geographical background, might affect call properties in anurans and suggests a common principle governing this relationship. The nuclear‐cell size ratio, affected by genome size, seems the most plausible explanation. However, we cannot rule out hypotheses under which call‐influencing genes from an unexamined diploid ancestral species might also affect call properties in the hybrid‐origin polyploids. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 584–590.  相似文献   

17.
Schneider MC  Almeida MC  Rosa SP  Costa C  Cella DM 《Genetica》2006,128(1-3):333-346
The speciose Brazilian Elateridae fauna is characterized by high karyotypic diversity, including one species (Chalcolepidius zonatus Eschscholtz, 1829) with the lowest diploid number within any Coleoptera order. Cytogenetic analysis of Conoderus dimidiatus Germar, 1839, C. scalaris (Germar, 1824,) C. ternarius Germar, 1839, and C. stigmosus Germar, 1839 by standard and differential staining was performed with the aim of establishing mechanisms of karyotypic differentiation in these species. Conoderus dimidiatus, C. scalaris, and C. ternarius have diploid numbers of 2n(♂) = 17 and 2n(♀) = 18, and a X0/XX sex determination system, similar to that encountered in the majority of Conoderini species. The karyotype of C. stigmosus was characterized by a diploid number of 2n=16 and a neoXY/neoXX sex determination system that was highly differentiated from other species of the genus. Some features of the mitotic and meiotic chromosomes suggest an autosome/ancestral X chromosome fusion as the cause of the neoXY system origin in C. stigmosus. C-banding and silver impregnation techniques showed that the four Conoderus species possess similar chromosomal characteristics to those registered in most Polyphaga species, including pericentromeric C band and autosomal NORs. Triple staining techniques including CMA3/DA/DAPI also provided useful information for differentiating these Conoderus species. These techniques revealed unique GC-rich heterochromatin associated with NORs in C. scalaris and C. stigmosus and CMA3-heteromorphism in C. scalaris and C. ternarius.  相似文献   

18.
19.
Genus Scytodes includes most species of the spider family Scytodidae. Until now, 187 species of the genus have been described. In spite of this great diversity, only three Scytodes species were karyotyped so far. The present paper provides for the first time karyotype analysis of two synanthropic species, Scytodes fusca and Scytodes itapevi. Furthermore, new data on karyotype of Scytodes globula are also provided using conventional and differential cytogenetical procedures. The diploid number in the genus Scytodes varied considerably, namely from 2n = 13 to 2n = 31. The diploid number found in S. globula (2n♂ = 13) is the lowest in haplogyne spiders with monocentric chromosomes. Except S. globula, this number has been found only in one haplogyne spider with monocentric chromosomes, namely Ochyrocera sp. (Ochyroceratidae). On the contrary, the diploid number of S. fusca (2n♂ = 31) is one of the highest diploid numbers recorded in haplogyne spiders. The degree of intrageneric variation found in the genus Scytodes is the highest recorded in araneomorph spiders with monocentric chromosomes so far. Some karyotype characteristics (diploid number, chromosome morphology, total chromosome length, and distribution of constitutive heterochromatin) allowed us to postulate a close relationship between S. globula and S. itapevi. According to the karyotype data, S. fusca is not closely related to these two species. This conclusion corroborates a recent taxonomic work that grouped S. globula, S. itapevi, and other four Scytodes species in the ‘globula group’.  相似文献   

20.
A karyological analysis of the so‐called primitive genera of Genisteae has shown that they have a relatively homogeneous chromosome complement: all species tend to have a somatic chromosome number 2n = 48, which can increase to 2n = 52, presumably as a result of hyperaneuploidy. Karyological data suggest that Argyrocytisus, Cytisophyllum and Petteria may be considered as distinct genera rather than being assigned to Cytisus, with 2n = 52 for the first of these and 2n = 50 for the other two genera. They may be interpreted as relict monotypic genera as a result of the presence of a stabilized aneuploidy. Karyological characters exclude a recent origin of Genisteae from Thermopsideae. On the contrary, they are consistent with the hypothesis that Genisteae and Thermopsideae are independently derived from a basic papilionoid stock, of which present day Sophoreae are the remainder. At least two lines would lead from Sophoreae to the taxa of the ‘genistoid alliance’, one to Thermopsideae and the other ‘podalyrioid alliances’ (Podalyrieae and Mirbelieae), with the prevailing basic number of x = 9, and the other to Genisteae, with a basic number of x = 12 persisting in some present day genera, including Cytisus s.l. From this lineage, a wide range of secondary basic numbers has been formed, mostly by descending aneuploidy. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 232–248.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号