共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Brandon M. Collins Jay D. Miller Andrea E. Thode Maggi Kelly Jan W. van Wagtendonk Scott L. Stephens 《Ecosystems》2009,12(1):114-128
We investigate interactions between successive naturally occurring fires, and assess to what extent the environments in which
fires burn influence these interactions. Using mapped fire perimeters and satellite-based estimates of post-fire effects (referred
to hereafter as fire severity) for 19 fires burning relatively freely over a 31-year period, we demonstrate that fire as a
landscape process can exhibit self-limiting characteristics in an upper elevation Sierra Nevada mixed conifer forest. We use
the term ‘self-limiting’ to refer to recurring fire as a process over time (that is, fire regime) consuming fuel and ultimately
constraining the spatial extent and lessening fire-induced effects of subsequent fires. When the amount of time between successive
adjacent fires is under 9 years, and when fire weather is not extreme (burning index <34.9), the probability of the latter
fire burning into the previous fire area is extremely low. Analysis of fire severity data by 10-year periods revealed a fair
degree of stability in the proportion of area burned among fire severity classes (unchanged, low, moderate, high). This is
in contrast to a recent study demonstrating increasing high-severity burning throughout the Sierra Nevada from 1984 to 2006,
which suggests freely burning fires over time in upper elevation Sierra Nevada mixed conifer forests can regulate fire-induced
effects across the landscape. This information can help managers better anticipate short- and long-term effects of allowing
naturally ignited fires to burn, and ultimately, improve their ability to implement Wildland Fire Use programs in similar
forest types.
BC wrote paper, performed analysis; JM gathered/processed data, performed analysis, contributed to writing; AT gathered/processed
data, conducted field research; MK contributed new methods for analysis; JvW performed analysis, conceived the study; SS designed
study, contributed to writing. 相似文献
3.
Question: Are long‐unburnt patches of eucalypt forest important for maintaining floristic diversity? Location: Eucalyptus forests of southeastern New South Wales, Australia. Methods: Data from 976 sites representing a range of fire history from three major vegetation formations – shrubby dry sclerophyll forest (SF), grassy dry SF and wet SF – were analysed. Generalized linear models were used to examine changes in species richness with increasing time since wildfire and analysis of similarities to examine changes in community composition. Chi‐squared tests were conducted to examine the distribution of individual species across four time since fire categories. Results: Plant species relationships to fire varied between the three formations. Shrubby dry SF supported lower plant species richness with increasing time since wildfire and this was associated with shifts in community composition. Grassy dry SF showed significant shifts in community composition and species richness in relation to time, with a peak in plant species richness 20–30 yr post fire (either prescribed fire or wildfire). Wet SF increased in species richness until 10–20 yr post wildfire then displayed a general declining trend. Species richness in each vegetation type was not related to the fire frequencies and fire intervals observed in this study. Conclusions: Long‐unburnt (30–50 yr post wildfire) forests appeared to play a minor role in the maintenance of plant species diversity in dry forest systems, although this was more significant in wet forests. Maintenance of a range of fire ages within each vegetation formation will assist in maintaining floristic diversity within regions. 相似文献
4.
Fire is a natural factor maintaining biodiversity and several ecological processes. The Brazilian Cerrado, considered the savanna with the highest biodiversity, is characterized by climatic seasonality, vegetation mosaics and topographic variations that together with fire determine its different plant physiognomies. The Chapada das Mesas National Park (CMNP), located in the south of the state of Maranhão (Brazil), has different savanna plant physiognomies with high ecological potential and archaeological and water wealth. The aim of the present study was to reconstruct the fire history over 28 years for the park and its surroundings (20 km buffer area), endeavouring to understand the impact of the creation of this National Park on its fire regime. Landsat satellite images were used from the TM, ETM + and OLI sensors to map the fire scars, which were identified and vectorized manually. The database created was used to analyze the total annual burned area, burned area percentage, density ignition, mean burn scar area and fire frequency during the mapped period. In total, 86 % of the CMNP was burn at least once between 1990 and 2017, while 72 % of the buffer area was burn. The creation of the park had significant effects on the density ignition when the periods before (1990–2005) and after (2006–2017) its creation were compared, and showed no significant effects on total annual area burned and average burn scar area. Despite the amount of burned area over time did not change significantly between the years before and after, the main change was observed in the fire seasonality after the creation of the park. In the park, 38 % of the area had a frequency of burn areas higher than ten times in the 28-year interval while 13 % of the buffer area was burn more than 10 times. In contrast, 23 % and 15 % had a fire frequency of 2 to 4 times on the buffer and the park respectively. Although the park was created to mitigate the human impacts of fire, the geographic isolation, the current occupation of the park by local populations and the pressure from agricultural expansion in the surroundings are influencing these conservation measures. Understanding the spatial–temporal distribution of fire in protected areas of the Cerrado contributes to improving management, preservation and conservation actions, so that in future studies other factors can be included to better understand the dynamic of fire occurrence in the region of the CMNP and in other protected areas of the Cerrado. 相似文献
5.
Bowman DM Balch J Artaxo P Bond WJ Cochrane MA D'Antonio CM Defries R Johnston FH Keeley JE Krawchuk MA Kull CA Mack M Moritz MA Pyne S Roos CI Scott AC Sodhi NS Swetnam TW Whittaker R 《Journal of Biogeography》2011,38(12):2223-2236
Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research. 相似文献
6.
Joseph W. Veldman Lars A. Brudvig Ellen I. Damschen John L. Orrock W. Brett Mattingly Joan L. Walker 《植被学杂志》2014,25(6):1438-1449
7.
Accurate assessment of changing fire regimes is important, since climatic change and people may be promoting more wildfires. Government wildland fire policies and restoration programmes in dry western US forests are based on the hypothesis that high‐severity fire was rare in historical fire regimes, modern fire severity is unnaturally high and restoration efforts should focus primarily on thinning forests to eliminate high‐severity fire. Using General Land Office (GLO) survey data over large dry‐forest landscapes, we showed that the proportion of historical forest affected by high‐severity fire was not insignificant, fire severity has not increased as a proportion of total fire area and large areas of dense forest were present historically (Williams & Baker, Global Ecology and Biogeography, 21 , 1042–1052, 2012; W&B). In response, Fulé et al. (Global Ecology and Biogeography, 2013, doi: 10.1111/geb.12136; FE) suggest that our inferences are unsupported and land management based on our research could be damaging to native ecosystems. Here, we show that the concerns of FE are unfounded. Their criticism comes from misquoting W&B, mistaking W&B's methods, misusing evidence (e.g. from Aldo Leopold) and missing substantial available evidence. We also update corroboration for the extensive historical high‐severity fire shown by W&B. We suggest that restoration programmes are misdirected in seeking to reduce all high‐severity fire in dry forests, given findings from spatially extensive GLO data and other sources. 相似文献
8.
澳大利亚森林火灾的管理与火生态的研究 总被引:9,自引:1,他引:9
澳大利亚是火灾频发的地区.每年因森林火灾的危害都要造成相当的社会、经济损失及生态环境的破坏,故火生态的研究及火的管理在澳大利亚的生态学研究中一直占有重要地位.本文主要讨论了澳洲森林大火起燃的物理过程和机制、可燃物的特征、林火的特点、习性及对生态环境的影响和如何控制和减少火灾的危害性,达到对火进行利用、控制和管理的目的. 相似文献
9.
Peter Z. Fulé Thomas W. Swetnam Peter M. Brown Donald A. Falk David L. Peterson Craig D. Allen Gregory H. Aplet Mike A. Battaglia Dan Binkley Calvin Farris Robert E. Keane Ellis Q. Margolis Henri Grissino‐Mayer Carol Miller Carolyn Hull Sieg Carl Skinner Scott L. Stephens Alan Taylor 《Global Ecology and Biogeography》2014,23(7):825-830
Reconstructions of dry western US forests in the late 19th century in Arizona, Colorado and Oregon based on General Land Office records were used by Williams & Baker (2012; Global Ecology and Biogeography, 21 , 1042–1052; hereafter W&B) to infer past fire regimes with substantial moderate and high‐severity burning. The authors concluded that present‐day large, high‐severity fires are not distinguishable from historical patterns. We present evidence of important errors in their study. First, the use of tree size distributions to reconstruct past fire severity and extent is not supported by empirical age–size relationships nor by studies that directly quantified disturbance history in these forests. Second, the fire severity classification of W&B is qualitatively different from most modern classification schemes, and is based on different types of data, leading to an inappropriate comparison. Third, we note that while W&B asserted ‘surprising’ heterogeneity in their reconstructions of stand density and species composition, their data are not substantially different from many previous studies which reached very different conclusions about subsequent forest and fire behaviour changes. Contrary to the conclusions of W&B, the preponderance of scientific evidence indicates that conservation of dry forest ecosystems in the western United States and their ecological, social and economic value is not consistent with a present‐day disturbance regime of large, high‐severity fires, especially under changing climate. 相似文献
10.
The provision of ecosystem services at the landscape level can be significantly influenced by land management practices. Within an agriculturally dominated case study area in Saxony, Germany, a more detailed land use classification, which includes differentiated information on agricultural management practices, was utilized within the raster-based planning support tool GISCAME. “Management” refers to typical, regional crop rotations and soil tillage practices.The focus of this research was based on an indicator-based approach to assess ecosystem services and the development of land use change (LUC) and land management change (LMC) scenarios. The EuroMaps Land Cover data set was specifically developed for the case study and included remote sensing information for the general land use classification and terrestrial mapping information. Furthermore, statistical data on detailed regional agricultural land management were included. The raster-based planning support tool GISCAME was then used to simulate scenarios and visualize results. The LUC and LMC scenarios showed that the more detailed land use classification provided better output for the prioritization of planning alternatives. Further it enabled a refined assessment of the provisioning services (i) food and fodder provision, (ii) biomass provision, the regulation services, (iii) soil erosion protection, (iv) drought risk regulation, (v) flood regulation, (vi) returns from land-based production (i.e. the market value of biomass provision), and (vii) ecological integrity. The results of this study support the view that the application of improved management measures, such as conservation tillage, can significantly enhance the provision of ecosystem services (e.g. soil erosion protection and drought risk regulation) at the landscape level. The study also indicates that a combination of strategic LUC, such as afforestation and LMC, might be an effective way to enhance regulating services with acceptable trade-offs regarding provisioning services. Our approach presents a refined foundation for ecosystem services assessment, which is designed to better support regional planning and the provision of information to non-experts in the participatory processes. For transfer into other regions, standardized land use and land management classification will have to be defined. 相似文献
11.
12.
The flammable ecosystems are evolutionary dependent on the periodic action of fire. Several environmental factors, both at local and landscape scales, can affect fire regimes in these ecosystems differently. Here, we evaluated the influence of local and landscape features on two parameters of the fire regime of a flammable protected area of the Brazilian savanna: The Chapada Diamantina National Park. We characterized both fire frequency and the time since the last fire, from 1990 to 2019 and measured five environmental predictors (tree canopy cover, altitude, water surface, predominant land use and distance to the nearest municipality). We used Generalized Additive Models for Location, Scale and Shape (GAMLSS) to assess the influence of environmental predictors on the measured fire regime parameters. We found a large interannual variation in the total annual area burned in the studied period. In total, 68 % of the protected area (1030 km2) was burned at least once and 32 % (486 km2) was unaffected by fires during the study period. Predominant land use, distance to the nearest municipality, tree cover and the interaction between tree cover and altitude were negatively related to fire frequency, while the water surface and altitude positively influenced fire frequency in the park. Compared to older fires, recent fires occurred in landscapes at lower altitudes and with lower tree cover. Our results demonstrate that the fire frequency and time since the last fire were highly variable across the park, reflecting the strong influence of landscape heterogeneity on their parameters. 相似文献
13.
M.E. Hanley 《应用植被学》2009,12(3):385-390
Question: Is the stimulation of germination by thermal shock (resulting from the passage of fire) commonly observed for Mediterranean‐climate Fabaceae also apparent for NW European Genisteae (Fabaceae) species? Location: Southern England and NW France. Methods: The germination of Cytisus scopiarius, Genista anglica, Ulex europaeus, Ulex gallii and Ulex minor was examined following exposure to a range of temperatures (50°C, 65°C, 80°C, 95°C and 110°C) applied to seeds for 5 min. A sixth Mediterranean‐origin species (Spartium junceum) was also included since it is a common invasive in NW Europe and North America. Results: All five native NW European species displayed increased germination following thermal shock, even when seeds were heated to 110°C. However, there was some variation depending on provenance: in contrast to seeds collected from southern England, germination of French C. scopiarius seeds was unaffected by temperature. Spartium junceum germinated most at 95°C, but was the only species to show reduced germination when seeds were heated to 110°C. Conclusions: The NW European Genisteae appear to be pre‐adapted to the high temperatures associated with fire; a response attributable to their evolutionary origins in the fire‐prone ecosystems of the Mediterranean Basin. Consequently, projected increases in fire frequency linked to climate change may stimulate their regeneration in NW European heathlands, potentially altering the species composition of these ecosystems. Additionally, a clearer understanding of the interaction between thermal shock and germination may explain why fire has so frequently been ineffective in controlling invasive Genisteae populations worldwide. 相似文献
14.
Robin J. Pakeman Jan Lepš Michael Kleyer Sandra Lavorel Eric Garnier the VISTA consortium 《植被学杂志》2009,20(1):148-159
Objective: To identify the relative roles of climatic, edaphic and management factors in controlling the weighted mean traits of vegetation. Location: Eleven sites in Europe and one in Israel undergoing transitions in land use. Material and Methods: Standardised methods were used to collect information on species traits and attributes from plots covering a range of land uses at each site. This was combined with abundance data to create a plot × trait matrix. Variance partitioning was used to identify the relative roles of climate, soil and management on the weighted and unweighted mean traits of the vegetation in the full data set, and the data set divided into vegetative traits (including life‐form, clonality, defence and a range of leaf traits) and traits linked to regeneration via seeds (including seed mass, dispersal and pollination mechanism). Results: Variance partitioning of the full data set showed that climate (18.7%), explained more variance in the weighted mean traits of the vegetation than climate and soil together (9.2), soil (6.9) and management (6.1). There was a similar distribution of variance explained for both vegetative and regeneration via seed traits, although more variance was explained for the latter. This restricted set of climatic, edaphic and management variables could explain 45‐50% of the variance in the weighted mean traits of the vegetation between plots. There were only small differences between analyses of the weighted and unweighted data. Conclusions: Despite large variations in climate and soils between sites, there was still a separate and recognisable impact of management on the mean weighted traits of the vegetation. There was also a degree of shared variation between the three groups of factors, indicating that the response of plant traits to one group of factors may not be predictable because they may be modulated by their response to other groups. 相似文献
15.
Lance T. Vermeire;Kurt O. Reinhart;Jacqueline Ott; 《Oikos》2024,2024(11):e10791
Disturbance seasonality and return interval can create complex interactions of direct and indirect effects on species and ecosystems. Fire is a key grassland disturbance, yet long-term research examining seasonality and return intervals is limited. A 15-year experiment testing combinations of fire seasonality (summer, fall, spring) and return interval (2, 3, 6-year) plus non-burned controls was conducted in northern mixed prairie to evaluate effects on the plant community. Hesperostipa comata is a native C3 bunchgrass and dominant species in northern mixed prairie and previously observed to be fire-sensitive. Current-year aboveground biomass results were generally counter to expectations based on short-term research. Fire increased H. comata biomass with a strong, rhythmic response pattern to a specific fire seasonality-return-interval combination (fall fire at 3-year return intervals) that periodically increased biomass to more than three times that with no fire. Through the first four post-fire growing seasons, biomass with summer, fall and spring fire across return intervals was 41, 89 and 93% of that with no fire. Afterward, no fire combination produced less biomass than no fire and recurring patterns emerged with large increases in biomass, particularly with fall fire at 3-year intervals. Peak biomass years were regularly two growing seasons after 3-year fall fire and occurred across wet, near-average and dry conditions. We hypothesize that productivity responses were driven by the combination of demographic processes of seedling recruitment and synchronization of multiple tiller age classes. Because short-term negative effects were reversed and regular patterns only emerged 5 years after study initiation, more long-term research evaluating fire regimes is recommended to expand upon tests of individual factors over short periods. This suggestion is based on fire research, but likely applies to multiple forms of disturbance and demonstrates how demographic processes can inform responses for individual species and larger ecosystem functions, such as productivity. 相似文献
16.
17.
Reassessing global change research priorities in mediterranean terrestrial ecosystems: how far have we come and where do we go from here? 总被引:1,自引:0,他引:1
E. Doblas‐Miranda J. Martínez‐Vilalta F. Lloret A. Álvarez A. Ávila F. J. Bonet L. Brotons J. Castro J. Curiel Yuste M. Díaz P. Ferrandis E. García‐Hurtado J. M. Iriondo T. F. Keenan J. Latron J. Llusià L. Loepfe M. Mayol G. Moré D. Moya J. Peñuelas X. Pons R. Poyatos J. Sardans O. Sus V. R. Vallejo J. Vayreda J. Retana 《Global Ecology and Biogeography》2015,24(1):25-43
18.
Burning is known to stimulate growth of grassland vegetation, promote species diversity, and inhibit natural invasion by woody plants. However, the frequency at which grasslands are burned as part of their management can affect soil nutrient content and, ultimately, productivity. The objective of this study was to characterize changes in soil physical and chemical properties in a native tallgrass prairie after 12 years of annual burning. In 1989, five soil samples from the 0 to 10 cm depth were collected along a transect through a 3 ha parcel of native tallgrass prairie in central Arkansas. Soil sampling was repeated in 2001 to assess changes over time. Results showed that soil bulk density, electrical conductivity, extractable P, Na, Fe, and Mn decreased significantly (P < 0.05), while soil organic matter, total N and C, and the C/N ratio increased significantly (P < 0.05) within the 12-year period during which annual burning was the only imposed management practice. Mean extractable K, Ca, Mg, S, and Zn levels were all lower in 2001 than in 1989, but differences were not significant, while soil pH did not change. The results of this study indicate that annual export of several essential plant nutrients during prescribed burning of relatively small, remnant prairie fragments exceeds annual imports from atmospheric deposition and/or organic matter mineralization. Annual prescribed burning may be too frequent to maintain optimal ecosystem functioning and productivity. Decreasing the frequency of prescribed burning for native grassland management may help to retain more soil nutrients to sustain a higher level of productivity. 相似文献
19.
This paper evaluates the history of fire management in the Bontebok National Park (3435 ha) over a period of almost four decades. A GIS database was compiled of all fires between 1972 and 2009 and the fire regime was analysed in terms of the frequency, season, size and cause of fires. Since the early 1970s, short interval burning was implemented to promote grazing for bontebok, but from 2004 the fire interval was lengthened to favour plant species diversity, an increasingly urgent conservation priority for the park. In total, 43 fires were recorded, ranging in size from 9 to 1007 ha, collectively spanning 14 013 ha. The majority of fires were large (100–500 ha), with fires of >100 ha accounting for 96% of the area burnt. The overall mean fire return period (FRP) for the park was 7.2 years, which is short judged by fynbos standards. FRPs under the old and new management regimes were 6.7 and 10.9 years respectively. Under the old regime, FRPs in renosterveld and fynbos were 5.8 and 8.0 years respectively. Large parts of the park repeatedly experienced fires at immature vegetation ages resulting in the elimination of slow-maturing seed-regenerating plant species such as Protea repens. Post-fire age distribution was highly skewed towards young vegetation, with 75% of fire-prone vegetation burning at post-fire ages of ≤7 years, and <10% of fire-prone vegetation surviving beyond 10 years of age. Prescribed and accidental fires respectively accounted for 70% and 30% of the total area burnt. Prescribed burning was mostly done in March–April, and only 8% of the total area burnt, burnt outside of the ecologically acceptable fire season. This study identified areas which have been subject to ecologically appropriate and inappropriate fire return intervals, providing a basis for informed future management and research. 相似文献