首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rodlet cells are an enigmatic cell type described in tissues of both marine and freshwater teleosts. Although their structure is well established, up to date their function remains subject of debate. However, there is consensus among the majority of researchers that rodlet cells play an important role within immune system, and this function is probably related with the release of rodlets due to contractile capability of their fibrous layer. Regulation of the contraction mechanism would require proteins that modulate Ca++ intracellular concentration to be expressed in rodlet cells. We performed a morphological and immunohistochemical study at light and electron microscopy levels to assess S100 protein immunoreactivity in developing rodlet cells. Immature stages did not exhibit immunoreactive signal; however, immunoreactivity was observed in the fibrous layer of both transitional and mature rodlet cells. The latter stage also showed immunosignal within the rodlets. These findings suggest a clear association between S100 protein expression and rodlet cell development that could be linked to the regulation of rodlet activity and contractile property of their fibrous layer. Furthermore, S100 protein antibody constitutes a novel marker for rodlet cells that could be used in future studies of this particular cell type.  相似文献   

2.
Sunfish rodlet cells were examined in vitro using a novel tissue explant system. Outgrowth of epidermal cell layers from explanted fish scales enabled both live cell videomicroscopy and immunocytochemical analysis of rodlet cells within the cell layer. Cells stained with fluorescent phallotoxin and antibody to tubulin showed that F‐actin is a component of the fibrous capsule that envelopes the cell and a microtubule network extends from the basal to apical ends of the cell interior. The fibrous capsule is also enriched for phosphotyrosine suggesting a potential signal‐transducing capability is present in this structure. Videomicroscopy analysis of live explant cultures demonstrated that rodlet cells are immobile and that interior structures are highly dynamic. Rodlet sacs can undergo extension and retraction, while intracellular particles can move rapidly within these cells. Fish scale tissue explants provide a useful system for analyzing the molecular composition and dynamic behavior of rodlet cells.  相似文献   

3.
In the angelfish ( Pterophyllum scalare scalare ) numerous rodlet cells were found in the large post-orbital blood vessel caudal to the eye and in the surrounding extravascular space. Within the vessel the rodlet cells formed striking regular arrays, along the inner aspect of the wall. The rodlets within the cells were positive to PAS but negative to Sudan Black B, Masson's, and the Fuelgen stain. The capsule around the cells was negative for all these stains. These rodlet cells appeared to be traversing the vessel endothelium, and to be pushing the endothelium aside without damaging it. Some discharged their contents into the vessel, but we never observed the release of intact rodlets. The nuclei of rodlet cells in actual contact with the vessel were at the end of the cell more distant from the endothelial wall. Cell-to-cell adhesion structures or communications junctions between rodlet cells and the endothelium were not evident. A putative rodlet cell precursor in the extravascular space contained large electron-dense granules, and extended pseudopodia that contacted nearby rodlet cells. Based on their morphology, tissue distribution, and their behaviour, we conclude that the rodlet cell is an endogeneous teleost cell type, and possibly represents a form of matured granulocyte.  相似文献   

4.
We previously described that pervanadate, a potent tyrosine phosphatase inhibitor, induced contraction of rat myometrium via phospholipase (PL) C-gamma1 activation [Biol Reprod 54 (1996) 1383]. In this study, we found that pervanadate induced tyrosine phosphorylation of the platelet-derived growth factor (PDGF)-beta receptor, interaction of the phosphorylated PDGF receptor with the phosphorylated PLC-gamma1, production of inositol phosphates (InsPs), extracellular signal-regulated kinase (ERK) activation and DNA synthesis. All these responses were insensitive to PDGF receptor kinase inhibition or PDGF receptor down-regulation. We showed that Src family kinases were activated by pervanadate, and that InsPs production and phosphorylation of both PLC-gamma1 and the PDGF receptor were blocked by PP1, an Src inhibitor. In contrast, the stimulation of ERK by pervanadate was totally refractory to PP1. These results demonstrated that the activation of Src by pervanadate is involved in PLC-gamma1/InsPs signalling but does not play a major role in ERK activation.  相似文献   

5.
We have demonstrated enhanced contractile sensitivity to the alpha(2)-adrenoreceptor (alpha(2)-AR) agonist UK-14304 in arteries from rats made hypertensive with chronic nitric oxide synthase (NOS) inhibition (LHR) compared with arteries from normotensive rats (NR); additionally, this contraction requires Ca(2+) entry. We hypothesized that tyrosine kinases augment alpha(2)-AR contraction in LHR arteries by increasing Ca(2+). The tyrosine kinase inhibitor tyrphostin 23 significantly attenuated UK-14304 contraction of denuded thoracic aortic rings from NR and LHR. However, tyrphostin 23 did not alter UK-14304 contraction in ionomycin-permeabilized aorta, which indicates that tyrosine kinases regulate intracellular Ca(2+) concentration. The Src family inhibitor PP1 and the epidermal growth factor receptor kinase inhibitor AG-1478 did not alter alpha(2)-AR contraction, whereas the mitogen-activated protein kinase extracellular signal-regulated kinase kinase inhibitor PD-98059 attenuated the contraction. Contraction to CaCl(2) in ionomycin-permeabilized LHR rings was greater than in NR rings. UK-14304 augmented CaCl(2) contraction in ionomycin-permeabilized rings from both groups but to a greater extent in LHR aorta. Together, these data suggest that alpha(2)-AR stimulates contraction via two pathways. One, which is enhanced with NOS inhibition hypertension, activates Ca(2+) sensitivity and is independent of tyrosine kinases. The other is tyrosine kinase dependent and regulates intracellular Ca(2+) concentration.  相似文献   

6.
7.
Signals delivered by Ig receptors guide the development of functional B lymphocytes. For example, clonal expansion of early mu heavy chain ( mu HC)-positive pre-B cells requires the assembly of a signal-competent pre-B cell receptor complex (pre-BCR) consisting of a mu HC, a surrogate L chain, and the signal dimer Ig alpha beta. However, only a small fraction of the pre-BCR is transported to the cell surface, suggesting that pre-BCR signaling initiates already from an intracellular compartment, e.g., the endoplasmic reticulum (ER). The finding that differentiation of pre-B cells and allelic exclusion at the IgH locus take place in surrogate L chain-deficient mice further supports the presence of a mu HC-mediated intracellular signal pathway. To determine whether a signal-competent Ig complex can already be assembled in the ER, we analyzed the consequence of pervanadate on tyrosine phosphorylation of Ig alpha in J558L plasmacytoma and 38B9 pre-B cells transfected with either a transport-competent IgL chain-pairing or an ER-retained nonpairing micro HC. Flow cytometry, combined Western blot-immunoprecipitation-kinase assays, and confocal microscopy revealed that both the nonpairing and pairing mu HC assembled with the Ig alpha beta dimer; however, in contrast to a pairing mu HC, the nonpairing mu HC was retained in the ER-cis-Golgi compartment, and neither colocalized with the src kinase lyn nor induced tyrosine phosphorylation of Ig alpha after pervanadate treatment of cells. On the basis of these findings, we propose that a signal-competent Ig complex consisting of mu HC, Ig alpha beta, and associated kinases is assembled in a post-ER compartment, thereby supporting the idea that a pre-BCR must be transported to the cell surface to initiate pre-BCR signaling.  相似文献   

8.
Several deleterious intra-acinar phenomena are simultaneously triggered on initiating acute pancreatitis. These culminate in acinar injury or inflammatory mediator generation in vitro and parenchymal damage in vivo. Supraphysiologic caerulein is one such initiator which simultaneously activates numerous signaling pathways including non-receptor tyrosine kinases such as of the Src family. It also causes a sustained increase in cytosolic calcium- a player thought to be crucial in regulating deleterious phenomena. We have shown Src to be involved in caerulein induced actin remodeling, and caerulein induced changes in the Golgi and post-Golgi trafficking to be involved in trypsinogen activation, which initiates acinar cell injury. However, it remains unclear whether an increase in cytosolic calcium is necessary to initiate acinar injury or if injury can be initiated at basal cytosolic calcium levels by an alternate pathway. To study the interplay between tyrosine kinase signaling and calcium, we treated mouse pancreatic acinar cells with the tyrosine phosphatase inhibitor pervanadate. We studied the effect of the clinically used Src inhibitor Dasatinib (BMS-354825) on pervanadate or caerulein induced changes in Src activation, trypsinogen activation, cell injury, upstream cytosolic calcium, actin and Golgi morphology. Pervanadate, like supraphysiologic caerulein, induced Src activation, redistribution of the F-actin from its normal location in the sub-apical area to the basolateral areas, and caused antegrade fragmentation of the Golgi. These changes, like those induced by supraphysiologic caerulein, were associated with trypsinogen activation and acinar injury, all of which were prevented by Dasatinib. Interestingly, however, pervanadate did not cause an increase in cytosolic calcium, and the caerulein induced increase in cytosolic calcium was not affected by Dasatinib. These findings suggest that intra-acinar deleterious phenomena may be initiated independent of an increase in cytosolic calcium. Other players resulting in acinar injury along with the Src family of tyrosine kinases remain to be explored.  相似文献   

9.
Nuclear DNA contents of rodlet cells from Catostomus commersoni, Semotilus atromaculatus and Cyprinus carpio were compared with nuclear DNA of erythrocytes and larger cells of the same species, using scanning microdensitometry and averaging microdensitometry. This study reappraises the work of Barber & Westermann (1983), which employed averaging microdensitometry only, and compared rodlet cell nuclear DNA only with erythrocyte DNA. In addition, this work considers sources of error in both methods of microdensitometry, and comments upon the use of microdensitometry of either method as a mechanism for making distinctions among the DNA contents of cells of different types. The results of the present work consistently indiate no significant differences within species between nuclear DNA content of rodlet cells and larger teleost cells, using either method of microdensitometry. Because of the lack of statistically significant difference in DNA content between nuclei of rodlet cells and those of known teleost cells, it has been concluded that the rodlet cell itself is probably of teleost origin. However, the method indicates nothing about the origin of the rodlets, which have also been shown to contain DNA, but are Feulgen-negative.  相似文献   

10.
Characteristics of Streptomyces coelicolor A3(2) aerial spore rodlet mosaic   总被引:5,自引:0,他引:5  
Cytochemical analysis of Streptomyces coelicolor (A3(2) indicated that the aerial growth rodlet mosaic is a polysaccharide. Statistical analysis of frequency distributions of individual rodlet lengths from control and ether-reoriented spore mosaics indicated that the rodlet fibrillar image is the result of individual particulates, rather than evaginations in a continuous sheet of material. A model of the mature sport envelope was developed from freeze-etch-replicated, thin-sectioned, and critical point dried S. coelicolor A3(2) mature spores. The rodlet mosaic was situated between the outer spore wall and an external granuloma matrix. Mixture spore envelope layers from the inner surface to the external surface are plasma membrane, inner spore wall, outer spore wall, rodlet mosaic, an undefined granular matrix, and the sheath. The granular matrix had an uneven thickness and much of the matrix was frequently absent from the interspore spaces of mature spore chains. Streptomyces coelicolor A3(2) mosaic rodlets were isolated by acetic acid refluxing, then ethanol precipitation. Complete acid hydrolysis of rodlets released on sugar which cochromatographed with D-glucosamine-HCl and released acetic acid at 139% of the expected level. Cell associated rodlet mosaics and isolated mosaic rodlets were hydrolyzed with chitinase. Infrared spectra of isolated rodlets were similar to crab chitin spectra.  相似文献   

11.
Smooth muscle contractility and protein tyrosine phosphorylation   总被引:1,自引:0,他引:1  
During the last 5 years several studies have documented an involvement of protein tyrosine kinases (PTKs) in smooth muscle contraction and Ca2+mobilization. Most of these studies have utilized highly selective inhibitors of PTKs, genistein and tyrphostin and have shown that these inhibitors attenuated smooth muscle contraction induced by growth factors - epidermal growth factor (EGF) and platelet derived growth factor (PDGF) and several vasoactive peptides. It has also been demonstrated that inhibitors of protein tyrosine phosphatases (PTPases) such as vanadate and pervanadate mimic growth factors and vasoactive peptides in causing the contraction of smooth muscle. In this brief review, we have summarized some of the recent observations suggesting a possible link between protein tyrosine phosphorylation pathway and smooth muscle contraction.  相似文献   

12.
The involvement of p21-activated kinases (PAKs) in important cellular processes such as regulation of the actin skeleton morphology, transduction of signals controlling gene expression, and execution of programmed cell death has directed attention to the regulation of the activity of these kinases. Here we report that activation of PAK2 by p21 GTPases can be strongly potentiated by cellular tyrosine kinases. PAK2 became tyrosine phosphorylated in its N-terminal regulatory domain, where Y130 was identified as the major phosphoacceptor site. Tyrosine phosphorylation-mediated superactivation of PAK2 could be induced by overexpression of different Src kinases or by inhibiting cellular tyrosine phosphatases with pervanadate and could be blocked by the Src kinase inhibitor PP1 or by mutating the Y130 residue. Analysis of PAK2 mutants activated by amino acid changes in the autoinhibitory domain or the catalytic domain indicated that GTPase-induced conformational changes, rather than catalytic activation per se, rendered PAK2 a target for tyrosine phosphorylation. Thus, PAK activation represents a potentially important point of convergence of tyrosine kinase- and p21 GTPase-dependent signaling pathways.  相似文献   

13.
Light and electron microscopic studies of the morphological features of immature and mature rodlet cells in Catostomus commersoni are presented emphasizing the cells' association with epithelial tissues. The peripheral fibrillar layer is lacking from the apex and from the base of the cell. A cytoplasmic extension from the base may be a feeding mechanism whereby the rodlet cell obtains nutrient at the expense of adjacent cells leaving intercellular spaces often containing myelin figures. RNAase digestion studies demonstrate the presence of RNA in the electron dense rodlet core.
The structure and histochemistry of the rodlets which do not appear to disintegrate upon expulsion from the cell are compared to the cytoplasmic inclusions of both normal fish cells and protozoan parasites. The possible association of the rodlet cell with various pathological conditions is briefly reviewed and the authors conclude that it is premature to disregard the possibility that this cell could be a parasite or infective agent.  相似文献   

14.
Hydrophobins are small surface active proteins that fulfil a wide spectrum of functions in fungal growth and development. The human fungal pathogen Aspergillus fumigatus expresses RodA hydrophobins that self-assemble on the outer conidial surface into tightly organized nanorods known as rodlets. AFM investigation of the conidial surface allows us to evidence that RodA hydrophobins self-assemble into rodlets through bilayers. Within bilayers, hydrophilic domains of hydrophobins point inward, thus making a hydrophilic core, while hydrophobic domains point outward. AFM measurements reveal that several rodlet bilayers are present on the conidial surface thus showing that proteins self-assemble into a complex three-dimensional multilayer system. The self-assembly of RodA hydrophobins into rodlets results from attractive interactions between stacked β-sheets, which conduct to a final linear cross-β spine structure. A Monte Carlo simulation shows that anisotropic interactions are the main driving forces leading the hydrophobins to self-assemble into parallel rodlets, which are further structured in nanodomains. Taken together, these findings allow us to propose a mechanism, which conducts RodA hydrophobins to a highly ordered rodlet structure. The mechanism of hydrophobin assembly into rodlets offers new prospects for the development of more efficient strategies leading to disruption of rodlet formation allowing a rapid detection of the fungus by the immune system.  相似文献   

15.
Correlative data are presented here on the developmental history, dynamics, histochemistry, and fine structure of intranuclear rodlets in chicken sympathetic neurons from in vivo material and long-term organized tissue cultures. The rodlets consist of bundles of ~70 ± 10 A proteinaceous filaments closely associated with ~0.4–0.8 µ spheroidal, granulofibrillar (gf) bodies of a related nature. These bodies are already present in the developing embryo a week or more in advance of the rodlets. In early formative stages rodlets consist of small clusters of aligned filaments contiguous with the gf-bodies. As neuronal differentiation progresses these filaments increase in number and become organized into well-ordered polyhedral arrays. Time-lapse cinemicrography reveals transient changes in rodlet contour associated with intrinsic factors, changes in form and position of the nucleolus with respect to the rodlet, and activity of the gf-bodies. With the electron microscope filaments may be seen extending between the nucleolus, gf-bodies, and rodlets; nucleoli display circumscribed regions with fine structural features and staining reactions reminiscent of those of gf-bodies, We suggest that the latter may be derivatives of the nucleolus and that the two may act together in the assemblage and functional dynamics of the rodlet. The egress of rodlet filaments into the cytoplasm raises the possibility that these might represent a source of the cell's filamentous constituents.  相似文献   

16.
The rodlet layers of wild-type and white mutantAspergillus nidulans conidia were purified by a simple centrifugation procedure after conidial suspensions were subjected to sonication. Chemical analysis showed that the major components of wild-type rodlets were protein and melanin in almost equal amounts, followed by carbohydrate. White mutant rodlets differed from those of the wild-type strain in that the melanin content was very low. Histidine, aspartic acid, glutamic acid, glycine, and alanine were the most prominent amino acids in the rodlet layer of the white mutant, whereas cystine and methionine were not found. Electron microscopy studies showed that the rodlets of both white mutant and wild-type strains were grouped into fascicles, which varied from 80 to 160 nm in width. Individual rodlets measured 125–360 nm in length and 7 nm in diameter.  相似文献   

17.
18.
Hydrophobins are amphiphilic proteins able to self-assemble at water-air interphases and are only found in filamentous fungi. In Aspergillus nidulans two hydrophobins, RodA and DewA, have been characterized, which both localize on the conidiospore surface and contribute to its hydrophobicity. RodA is the constituent protein of very regularly arranged rodlets, 10 nm in diameter. Here we analyzed four more hydrophobins, DewB-E, in A. nidulans and found that all six hydrophobins contribute to the hydrophobic surface of the conidiospores but only deletion of rodA caused loss of the rodlet structure. Analysis of the rodlets in the dewB-E deletion strains with atomic force microscopy revealed that the rodlets appeared less robust. Expression of DewA and DewB driven from the rodA promoter and secreted with the RodA secretion signal in a strain lacking RodA, restored partly the hydrophobicity. DewA and B were able to form rodlets to some extent but never reached the rodlet structure of RodA. The rodlet-lacking rodA-deletion strain opens the possibility to systematically study rodlet formation of other natural or synthetic hydrophobins.  相似文献   

19.
The Na+, K+-ATPase or Na+, K+-pump plays a critical role in ion homeostasis and many cellular events. The Na+, K+-pump activity is regulated by serine/threonine phosphorylation, the role of tyrosine kinases in the regulation, however, is obscure. We now present novel evidence showing that tyrosine phosphorylation activates the Na+, K+-pump in cortical neurons. The electrogenic activity of the Na+, K+-pump was measured using whole-cell voltage clamp. A tonic activity was revealed by an inward current induced by the specific inhibitor ouabain or strophanthidin; an outward current due to activation of the pump was triggered by raising extracellular K+. The inward and outward currents were attenuated by the tyrosine kinase inhibitor genistein, herbimycin A, or lavendustin A, while blocking tyrosine phosphatases increased the pump current. Down-regulation of the pump current was also seen with the Src inhibitor PP1 and intracellularly applied anti-Lyn or anti-Yes antibody. Consistently, intracellular application of Lyn kinase up-regulated the pump current. Immunoprecipitation and western blotting showed tyrosine phosphorylation and a direct interaction between Lyn and the alpha3 subunit of the Na+, K+-pump. The tyrosine phosphorylation of the alpha3 subunit was reduced by serum deprivation. These data suggest that the Na+, K+-ATPase activity in central neurons is regulated by specific Src tyrosine kinases via a protein-protein mechanism and may play a role in apoptosis.  相似文献   

20.
Rodlet cells in various stages of development were found in large numbers in the bass gill and pseudobranch. In the gill, rodlet cells were found in the epithelium at the base of the secondary lamellae and on the filament between adjacent lamellae, whilst in the pseudobranch they were found over the whole area of the secondary lamellae as well as in the filament epithelium.
During early development, rodlet cells are characterised by their amorphous cell inclusions, prominent supranuclear Golgi complex and network of granular endoplasmic reticulum. Later, with formation of a fibrous border the arrangement of the cell organelles undergoes reorganisation; the endoplasmic reticulum becomes distended, numerous vesicles appear and the mitochondria aggregate in the apical region of the cell. One of the most striking features is the development of club-shaped sacs containing electron dense cores, which are orientated towards the open apex of the cell.
Various staining properties of rodlet cells for light and electron microscopy were compared with those of mucous cells found in the same tissues. Possible functions of the cell are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号