首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In an attempt to delineate the area of origin and migratory expansion of the highly successful invasive weedy species Hypochaeris radicata, we analysed amplified fragment length polymorphisms from samples taken from 44 populations. Population sampling focused on the central and western Mediterranean area, but also included sites from Northern Spain, Western and Central Europe, Southeast Asia and South America. The six primer combinations applied to 213 individuals generated a total of 517 fragments of which 513 (99.2%) were polymorphic. The neighbour-joining tree presented five clusters and these divisions were supported by the results of Bayesian analyses: plants in the Moroccan, Betic Sierras (Southern Spain), and central Mediterranean clusters are all heterocarpic. The north and central Spanish, southwestern Sierra Morena, and Central European, Asian and South American cluster contain both heterocarpic (southwestern Sierra Morena) and homocarpic populations (all other populations). The Doñana cluster includes two homocarpic populations. Analyses of fragment parameters indicate that the oldest populations of H. radicata are located in Morocco and that the species expanded from this area in the Late Quaternary via at least three migratory routes, the earliest of which seems to have been to the southwestern Iberian Peninsula, with subsequent colonizations to the central Mediterranean area and the Betic Sierras. Homocarpic populations originated in the southwestern Iberian Peninsula and subsequently spread across north and central Spain, Central Europe and worldwide, where they became a highly successful weed.  相似文献   

2.
Analyses of mitochondrial (mt) DNA and microsatellite variation were carried out to examine the relationships between 10 freshwater populations of three-spined sticklebacks Gasterosteus aculeatus along the eastern coast of the Adriatic Sea. Partial sequences of the mtDNA control region and cytochrome b gene, in addition to 15 microsatellite loci, were used to analyse populations from four isolated river catchments. Results uncovered an Adriatic lineage that was clearly divergent from the European lineage, and confirmed that the most divergent and ancient populations are located within the Adriatic lineage as compared with other European populations. Two northern Adriatic populations formed independent clades within the European mitochondrial lineage, suggesting different colonization histories of the different Adriatic populations. Nuclear marker analyses also indicated deep divergence between Adriatic and European populations, albeit with some discordance between the mtDNA phylogeny of the northern Adriatic populations, further highlighting the strong differentiation among the Adriatic populations. The southern populations within the Adriatic lineage were further organized into distinct clades corresponding to respective river catchments and sub-clades corresponding to river tributaries, reflecting a high degree of population structuring within a small geographic region, concurrent with suggestions of existence of several microrefugia within the Balkan Peninsula. The highly divergent clades and haplotypes unique to the southern Adriatic populations further suggest, in accordance with an earlier, more limited survey, that southern Adriatic populations represent an important reservoir for ancient genetic diversity of G. aculeatus.  相似文献   

3.
Aim Many tropical tree species have poorly delimited taxonomic boundaries and contain undescribed or cryptic species. We examined the genetic structure of a species complex in the tree genus Carapa in the Neotropics in order to evaluate age, geographic patterns of diversity and evolutionary relationships, and to quantify levels of introgression among currently recognized species. Location Lowland moist forests in the Guiana Shield, the Central and Western Amazon Basin, Chocó and Central America. Methods Genetic structure was analysed using seven nuclear simple sequence repeats (nuSSR), five chloroplast SSRs (cpSSR), and two chloroplast DNA (cpDNA) intergenic sequences (trnH–psbA and trnC–ycf6). Bayesian clustering analysis of the SSR data was used to infer population genetic structure and to assign 324 samples to their most likely genetic cluster. Bayesian coalescence analyses were performed on the two cpDNA markers to estimate evolutionary relationships and divergence times. Results Two genetic clusters (nu_guianensis and nu_surinamensis) were detected, which correspond to the Neotropical species C. guianensis (sensu latu) and C. surinamensis. Fourteen cpDNA haplotypes clustered into six haplogroups distributed between the two nuclear genetic clusters. Divergence between the haplogroups was initiated in the Miocene, with some haplotype structure evolving as recently as the Pleistocene. The absence of complete lineage sorting between the nuclear and chloroplast genomes and the presence of hybrid individuals suggest that interspecific reproductive barriers are incomplete. NuSSR diversity was highest in C. guianensis and, within C. guianensis, cpDNA diversity was highest in the Central and Western Amazon Basin. Regional genetic differentiation was strong but did not conform to an isolation‐by‐distance process or exhibit a phylogeographical signal. Main conclusions The biogeographical history of Neotropical Carapa appears to have been influenced by events that took place during the Neogene. Our results point to an Amazonian centre of origin and diversification of Neotropical Carapa, with subsequent migration to the Pacific coast of South America and Central America. Gene flow apparently occurs among species, and introgression events are supported by inconsistencies between chloroplast and nuclear lineage sorting. The absence of phylogeographical structure may be a result of the ineffectiveness of geographical barriers among populations and of reproductive isolation mechanisms among incipient and cryptic species in this species complex.  相似文献   

4.
Recent work on terrestrial isopods has shown that morphospecies can have a high degree of genetic diversity. We conducted a molecular phylogenetic study of Spherillo grossus (Budde‐Lund, 1885), a terrestrial isopod endemic to the east coast of Australia. We sequenced the mitochondrial 16S rDNA gene of 63 specimens from 12 collection localities. From a subset of these specimens, we also sequenced the mitochondrial cytochrome c oxidase subunit I (COI) and nuclear 18S rDNA genes. Deep mitochondrial divergences were found among groups of individuals (with p‐distances up to 15, 14, and 0.7% for 16S, COI, and 18S respectively), a pattern consistent with the hypothesis that gene flow between populations has been influenced by the fragmentation of Australia's mesic environment since the Miocene. We also found evidence of human‐mediated dispersal of S. grossus. Scanning electron and light microscopy of a subset of samples provide preliminary evidence that S. grossus is morphologically homogeneous. Our results mirror those found in studies of oniscid isopods from the Northern Hemisphere. © 2013 The Linnean Society of London  相似文献   

5.
Acanthophyllum squarrosum and two closely related species, A. heratense and A. laxiusculum (Caryophyllaceae), form a complex that covers parts of subalpine steppes of the Irano-Turanian (IT) region. In this study, we explored the genetic structure and phylogeography of this complex based on partial sequences of two chloroplasts (psbA–trnH and rpl32–trnL (UAG)) and two nuclear (EST24 and nrITS) DNA regions. We analysed 80 individuals from eight populations and detected 12 chloroplast haplotypes, 16 and eight nuclear alleles in EST24 and nrITS sequences, respectively. Phylogenetic trees and haplotype networks did not show distinct genetic groups in the complex and this could be explained by incomplete lineage sorting or introgression between species. Divergence time analysis revealed a Quaternary origin for A. squarrosum complex at approximately 1.8 million years ago (Mya) and the neutrality test results indicated that this complex experienced a recent population expansion. AMOVA analysis of the chloroplast regions showed a significant genetic differentiation among populations and low genetic differentiation within populations, but opposite results were found with nuclear markers, implying introgression between A. squarrosum complex populations.  相似文献   

6.
Extreme conditions in subsurface are suspected to be responsible for morphological convergences, and so to bias biodiversity assessment. Subterranean organisms are also considered as having poor dispersal abilities that in turn generate a large number of endemic species when habitat is fragmented. Here we test these general hypotheses using the subterranean amphipod Niphargus virei. All our phylogenetic analyses (Bayesian, maximum likelihood and distance), based on two independent genes (28S and COI), revealed the same tripartite structure. N. virei populations from Benelux, Jura region and the rest of France appeared as independent evolutionary units. Molecular rates estimated via global or Bayesian relaxed clock suggest that this split is at least 13 million years old and accredit the cryptic diversity hypothesis. Moreover, the geographical distribution of these lineages showed some evidence of recent dispersal through apparent vicariant barrier. In consequence, we argue that future analyses of evolution and biogeography in subsurface, or more generally in extreme environments, should consider dispersal ability as an evolving trait and morphology as a potentially biased marker.  相似文献   

7.
Phylogeography and Origin of Sheep Breeds in Northern China   总被引:4,自引:0,他引:4  
With the establishment of modern sheep production systems in China, various forms of hybridization with Western breeds and between native breeds have been utilized for genetic improvement. At the same time, the progressive destruction or deterioration of sheep habitat has accompanied urbanization in China. Together these factors have accelerated the loss of genetic diversity, or even resulted in the extinction of some indigenous breeds. It is therefore important that efficient strategies for surveillance, evaluation, conservation and utilization of available genetic resources are developed for this species. In this study, a total of 30 microsatellite markers were used to assess genetic diversity for 12 native breeds and one Western sheep breed in Northern China. The high polymorphism information contents at the 30 markers, varying from averages of 0.519 to 0.666 for the 13 breeds, imply the retention of natural variation from source populations in the domestic breeds from different geographic regions in China. Analysis of genetic differentiation revealed substantial divergence among these breeds. Neutrality tests indicated that more than one third of the 30 loci were in departure from neutrality, implying that some evolutionary forces (e.g. selection and migration) had acted on these populations. Phylogenetic and phylogeographic analyses displayed a remarkable degree of consistency between geographic origins, breeding histories and the pattern of genetic differentiation.  相似文献   

8.
This study investigated the effects of climate oscillations on the evolution of two closely related Allium species, A. neriniflorum and A. tubiflorum. We sequenced three cp DNA (cpDNA) fragments (rps16, rpl32‐trnL, and trnD‐trnT, together approximately 2,500 bp in length) of two closely related Allium species, with samples from 367 individuals in 47 populations distributed across the total range of these species. The interspecific and intraspecific divergence times of the two species were in the Quaternary glaciation. The population divergence was high for the cpDNA variation, suggesting a significant phylogeographic structure (NST = 0.844, GST = 0.798, p < 0.05). Remarkable ecological differentiation was also revealed by Niche models and statistical analyses. Our results suggest the speciation event of the two species was triggered by violent climatic changes during the Quaternary glaciation.  相似文献   

9.
The population genetic structure of the Australian plant Lambertia orbifolia was investigated for chloroplast DNA (cpDNA) and rDNA based on restriction fragment length polymorphism. Variation was assessed in 14-20 individuals from six populations with probes covering the majority of the chloroplast genome and the whole rRNA gene unit. For cpDNA, eight mutations were detected which were distributed over five haplotypes. Nucleotide diversity in the species was high and the majority of this diversity was distributed between populations with diversity within populations restricted to a single population. There was significant differentiation between the two regions in the species distribution with the Narrikup region being distinguished by a single haplotype that was characterized by six unique mutations. Variation in rDNA was detected with three gene length variants present in most individuals. However, the Narrikup region was characterized by homogenization of the gene unit to a single length variant in all individuals. The divergence of the Narrikup region suggests that the disjunction in the species distribution has been present for a long time and the two regions represent separate evolutionary lineages.  相似文献   

10.
11.
12.
Largemouth Bass (Micropterus salmoides) have been introduced on a global scale for sport fishing but represent a conservation concern given their documented negative impacts on native faunal diversity and abundance. Recent research using molecular data to characterize invasive Largemouth Bass populations elsewhere has demonstrated that populations are typically characterized by limited genetic diversity, or represent a combination of Largemouth Bass and Florida Bass (Micropterus floridanus). To test whether these traits were consistent with invasive populations in Brazil, we generated mitochondrial sequence data from four established populations of Largemouth Bass collected in southern Brazil as well as a local aquaculture facility to confirm species identity and quantify levels of genetic diversity. We identified the exclusive presence of Largemouth Bass in the region and observed limited levels of haplotype (haplotype diversity = 0.0684, SE = 0.038) and nucleotide diversity (0.0003, SE = 0.0002) which suggested the presence of a founder effect associated with introduction. Each of the four populations were dominated by a single haplotype that was identical to one recovered from a nearby aquaculture facility, which identified this facility as a potential introduction source.  相似文献   

13.
Using genetic data to study the process of population divergence is central to understanding speciation, yet distinguishing between recent divergence and introgressive hybridization is challenging. In a previous study on the phylogeography of the yellow‐rumped warbler complex using mitochondrial (mt)DNA data, we reported limited sequence divergence and a lack of reciprocal monophyly between myrtle and Audubon's warblers (Dendroica coronata and Dendroica auduboni, respectively), suggesting very recent isolation. In the present study, we report the results obtained from a subsequent sampling of Audubon's warbler in Arizona and Utah (‘memorabilis’ race), which shows that, although this taxon is similar to auduboni in plumage colour, most memorabilis individuals sampled (93%) carry haplotypes that belong to the divergent black‐fronted warbler lineage (Dendroica nigrifrons) of Mexico. Furthermore, the auduboni and nigrifrons lineages mix in southern Utah at a narrow, yet apparently ‘cryptic’ contact zone. Newly‐available evidence from nuclear markers indicating marked differentiation between auduboni and coronata has focused attention on the possibility of mtDNA introgression in the absence of nuclear gene flow, and the results of the present study are consistent with the hypothesis that the mtDNA of auduboni was indeed historically introgressed from the coronata lineage. Analysis of morphological traits shows that memorabilis is significantly differentiated from auduboni and nigrifrons in some traits, yet is overall intermediate between the two, which is consistent with a shared common ancestor for the auduboni/memorabilis/nigrifrons group. The striking, unexpected mtDNA pattern reported in the present study reveals a complex evolutionary history of the yellow‐rumped warbler complex, and cautions against the exclusive use of mtDNA to infer evolutionary relationships. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 696–706.  相似文献   

14.
单倍型分析在人和动、植物的许多学科领域都取得了丰硕的研究成果。本文主要介绍了单倍型的概念、研究方法,以及常用的可视化网络分析软件的操作步骤,同时综述和讨论了单倍型在菌物学一些领域,如种群的遗传多样性、生物地理来源及迁徙、复合种群中隐存种的界定及其与系统发育关系、生物入侵及新兴病原的单倍型分析侦测等的研究进展,以期为菌物学向更深层次发展提供新的视角和途径。  相似文献   

15.
Aim Savanna occupies a substantial part of Africa, being distributed around the two major tropical rain forest blocks in what is referred to as the Savanna Belt. Our current understanding of the genetic structure within species distributed across the Savanna Belt is primarily derived from mammalian taxa, studies of which have revealed a suture zone or transition between northern and east/southern Africa clades in south‐western Kenya and north‐western Tanzania. We conduct a phylogeographic study of the fiscal shrike (Lanius collaris), a polytypic species distributed across the Savanna Belt of Africa and for which morphological and vocal data are in agreement with the suture zone recovered for mammalian taxa, to test the hypothesis of a spatially congruent genetic break across several taxa, including birds. Location Africa, south of the Sahara. Methods We analysed DNA sequences recovered from four loci (one mitochondrial, two autosomal and one Z‐linked) in 66 individuals, representing all recognized subspecies, as well as putatively closely related species. We make use of a combination of tree‐building and population genetic methods to investigate the phylogeographic structure of the fiscal shrike across Africa. Results The fiscal shrike consists of two primary lineages with a strong geographic component: a northern group distributed from southern Tanzania to Senegal, and a southern group distributed from Botswana/Zambia to South Africa with isolated populations in Tanzania and northern Malawi. Unexpectedly, Souza’s shrike (L. souzae) was nested within L. collaris, as the sister group of the southern group. The positions of Mackinnon’s shrike (L. mackinnoni) and that of the São Tomé shrike (L. newtoni) were variable, being either nested within the fiscal shrike or sister to the L. collarisL. souzae clade. Our divergence time analyses suggest that the Lanius collaris species complex started to diversify around 2.2 Ma. Main conclusions Our study reveals a distinct biogeographic pattern for a savanna distributed species in Africa, with the transition between the two primary genetic lineages occurring at a latitude of c. 15–16° S, 10° S further south than shown elsewhere for several mammalian species.  相似文献   

16.
Aim Patterns of genetic variation within forest species are poorly documented in island ecosystems. The distribution of molecular variation for Santalum insulare, an endangered tree species endemic to the islands of eastern Polynesia, was analysed using chloroplast microsatellite markers. The aims were to quantify the genetic diversity; to assess the genetic structure; and to analyse the geographical distribution of the diversity within and between archipelagoes. The ultimate goal was to pre‐define evolutionary significant units (ESUs) for conservation and restoration programmes of this species, which constitutes a natural resource on small, isolated islands. Location Eleven populations, each representative of one island, covering most of the natural occurrence of S. insulare were sampled: five populations from the Marquesas Archipelago; three from the Society Archipelago; and three from the Cook–Austral Archipelago. These South Pacific islands are known for their high degree of plant endemism, and for their human occupation by Polynesian migrations. The extensive exploitation of sandalwood by Europeans nearly 200 years ago for its fragrant heartwood, used overseas in incense, carving and essential oil production for perfume, has dramatically reduced the population size of this species. Methods We used chloroplast microsatellites, which provide useful information in phylogeographical forest tree analyses. They are maternally inherited in most angiosperms and present high polymorphism. Among the 499 individuals sampled, 345 were genotyped successfully. Classical models of population genetics were used to assess diversity parameters and phylogenetic relationships between populations. Results Four microsatellite primers showed 16 alleles and their combinations provided 17 chlorotypes, of which four exhibited a frequency > 10% in the total population. The gene diversity index was high for the total population (He = 0.82) and varied among archipelagoes from He = 0.40 to 0.67. Genetic structure is characterized by high levels of differentiation between archipelagoes (36% of total variation) and between islands, but differentiation between islands varied according to archipelago. The relationship between genetic and geographical distance confirms the low gene flow between archipelagoes. The minimum spanning tree of chlorotypes exhibits three clusters corresponding to the geographical distribution in the three main archipelagoes. Main conclusions The high level of diversity within the species was explained by an ancient presence on and around the hotspot traces currently occupied by young islands. Diversity in the species has enabled survival in a range of habitats. Relationships between islands show that the Cook–Austral chlorotype cluster constitutes a link between the Marquesas and the Society Islands. This can be explained by the evolution of the island systems over millions of years, and extinction of intermediary populations on the Tuamotu Islands following subsidence there. Based on the unrooted neighbour‐joining tree and on the genetic structure, we propose four ESUs to guide the conservation and population restoration of Polynesian Sandalwood: the Society Archipelago; the Marquesas Archipelago; Raivavae Island; and Rapa Island.  相似文献   

17.
Andean orogenesis has driven the development of very high plant diversity in the Neotropics through its impact on landscape evolution and climate. The analysis of the intraspecific patterns of genetic structure in plants would permit inferring the effects of Andean uplift on the evolution and diversification of Neotropical flora. In this study, using microsatellite markers and Bayesian clustering analyses, we report the presence of four genetic clusters for the palm Oenocarpus bataua var. bataua which are located within four biogeographic regions in northwestern South America: (a) Chocó rain forest, (b) Amotape‐Huancabamba Zone, (c) northwestern Amazonian rain forest, and (d) southwestern Amazonian rain forest. We hypothesize that these clusters developed following three genetic diversification events mainly promoted by Andean orogenic events. Additionally, the distinct current climate dynamics among northwestern and southwestern Amazonia may maintain the genetic diversification detected in the western Amazon basin. Genetic exchange was identified between the clusters, including across the Andes region, discarding the possibility of any cluster to diversify as a distinct intraspecific variety. We identified a hot spot of genetic diversity in the northern Peruvian Amazon around the locality of Iquitos. We also detected a decrease in diversity with distance from this area in westward and southward direction within the Amazon basin and the eastern Andean foothills. Additionally, we confirmed the existence and divergence of O. bataua var. bataua from var. oligocarpus in northern South America, possibly expanding the distributional range of the latter variety beyond eastern Venezuela, to the central and eastern Andean cordilleras of Colombia. Based on our results, we suggest that Andean orogenesis is the main driver of genetic structuring and diversification in O. bataua within northwestern South America.  相似文献   

18.
Repeated climatic and vegetation changes during the Pleistocene have shaped biodiversity in Northern Europe including Denmark. The Northern Birch Mouse (Sicista betulina) was one of the first small rodent species to colonize Denmark after the Late Glacial Maximum. This study analyses complete mitochondrial genomes and two nuclear genes of the Northern Birch Mouse to investigate the phylogeographical pattern in North‐western Europe and test whether the species colonized Denmark through several colonization events. The latter was prompt by (i) the present‐day distinct northern and southern Danish distribution and (ii) the subfossil record of Northern Birch Mouse, supporting early Weichselian colonization. Samples from Denmark, Norway, Sweden, Russia, Latvia, Estonia, and Slovakia were included. Mitogenomes were obtained from 54 individuals, all representing unique mitogenomes supporting high genetic variation. Bayesian phylogenetic analysis identified two distinct evolutionary linages in Northern Europe diverging within the Elster glaciation period. The results of the two nuclear genomes showed lower genetic differentiation but supported the same evolutionary history. This suggests an allopatric origin of the clades followed by secondary contact. Individuals from southern Denmark were only found in one clade, while individuals from other areas, including northern Denmark, were represented in both clades. Nevertheless, we found no evidence for repeated colonization''s explaining the observed fragmented distribution of the species today. The results indicated that the mitogenome pattern of the Northern Birch Mouse population in southern Denmark was either (i) due to the population being founded from northern Denmark, (ii) a result of climatic and anthropogenic effects reducing population size increasing genetic drift or (iii) caused by sampling bias.  相似文献   

19.
In this study, we aimed to study the phylogeographic pattern of Juniperus sabina, a shrub species commonly occurring in the northern, northwestern and western China. We sequenced three chloroplast DNA fragments (trnL-trnF, trnS-trnG, and trriD-trriT) for 137 individuals from 16 populations of this species. Five chloroplast DNA chlorotypes (A, B, C, D, and E) were identified and they showed no overlapping distribution. The population subdivision is very high (GST = 0.926, NST= 0.980), suggesting a distinct phylogeographic structure (NST > GST, P < 0.05). Phylogenetic analyses of the five chlorotypes were clustered into three clades, consistent with their respective distributions in three separate regions: northern Xinjiang, western Xinjiang, and northern-northwestern China. However, within each region, the interpopulation differentiation is extremely low. These results as well as statistical tests suggested distinct allopatric differentiations between regional populations and independent glacial refugia for postglacial recolonization. The deserts that developed during the late Quaternary might have acted as effective barriers to promote genetic differentiation among these regions. However, the low diversity dominated by the single chlorotype within each fragmented region suggested that all current populations were derived from a common regional range expansion.  相似文献   

20.
Ross TK 《Molecular ecology》1999,8(9):1363-1373
The Iowa Pleistocene snail, Discus macclintocki, is an endangered species that survives only in relictual populations on algific (cold-air) talus slopes in northeast Iowa and northwest Illinois in the central region of the USA. These populations are believed to have been isolated since the temperatures began to warm at the end of the last glacial period around 16 500 years ago. DNA sequencing of the 16s rRNA gene of the mitochondria was used to determine the genetic relationship among 10 populations and the genetic diversity within these populations. Genetic diversity is extremely high within this species with 40 haplotypes spread across the 10 populations sampled within a 4000 km2 region. Phylogenetic analyses showed that haplotypes formed monophyletic groups by the watershed on which they were found, suggesting that watersheds were important historical avenues of gene flow. Genetic distances were strongly related to the geographical distance among all populations, but this relationship was dependent on the scale being considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号