首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Globally, temperate grasslands and meadows have sharply declined in spatial extent. Loss and fragmentation of grasslands and meadows may impact biodiversity, carbon storage, energy balance, and climate change. In the Pacific Northwest region of North America, grasslands and meadows have declined in extent over the past century. Largely undocumented in this regional decline are the grass balds of the Oregon Coast Range, isolated grasslands in a landscape dominated by coniferous forests. This study was conducted to quantify the spatial extent and patterns of grass bald change. Five balds in the Oregon Coast Range were evaluated using historical aerial photographs and recent digital orthophoto quadrangles (DOQ). Over the time period of study (1948/1953 to 1994/2000), bald area declined by 66%, primarily from forest encroachment. The number and average size of bald vegetation patches declined, while edge density increased. Tree encroachment into balds was inversely related to distance from nearest potential parent trees. Spatial patterns of bald loss may result from a forest to bald gradient of unfavorable environmental conditions for tree establishment and/or seed dispersal limitation. Species dependent on balds may be at risk from loss of bald area and increased fragmentation, although metrics of habitat fragmentation may not reflect species-specific habitat requirements. Tree encroachment patterns and increased bald edge densities suggest increasing rates of bald loss in the future. The remote sensing nature of this study cannot determine the fundamental causes of bald decline, although prior research suggests climate change, cessation of native burning, successional changes in response to prior wildfires, and cessation of livestock grazing all may have potential influence.  相似文献   

2.
Abstract Aim The research explores how changes in disturbance regime resulting from human settlement may affect landscape structure. A spatially explicit grid‐based simulation model is used to explore the interplay between humans, fire regime and landscape composition. Location The study site for this research is the botanical reserve at Mont Do, New Caledonia. The endemic conifer Araucaria laubenfelsii (Araucariaceae) forms a key component of the landscape at Mont Do. This species is unusual in that it is found scattered as an emergent in maquis and as a canopy species in adjacent rain forest patches. Although now dominated by a low maquis, prior to human settlement of New Caledonia, montane landscapes such as Mont Do are likely to have been heavily forested. Methods A spatially explicit simulation model, based on field data and palaeoecological information, was used to explore interactions between disturbance regime and the landscape. The model is described briefly here and more fully in Perry & Enright (2002) Ecological Modelling, 152 , 279. Results The model suggests that human‐influenced changes to the fire regime at Mont Do have been important in generating the current landscape structure. The origin and maintenance of forest landscapes and maquis‐forest mosaic landscapes are considered in the context of alternative stable states. Strong feedback loops between fire size and landscape composition, mediated at the smaller scale by other similar mechanisms, are capable of driving landscape change. The utility of a spatial state and transition modelling approach is demonstrated. Main conclusions The current landscape pattern on Mont Do is likely the result of changes to the fire regime occurring since human settlement. The specific mechanisms for this change outlined here may occur in a number of other similar systems. Understanding the origin and persistence of these ‘fire landscapes’ in New Caledonia and in the south‐west Pacific in general is crucial for their effective management.  相似文献   

3.
Tropical montane taxa are often locally adapted to very specific climatic conditions, contributing to their lower dispersal potential across complex landscapes. Climate and landscape features in montane regions affect population genetic structure in predictable ways, yet few empirical studies quantify the effects of both factors in shaping genetic structure of montane-adapted taxa. Here, we considered temporal and spatial variability in climate to explain contemporary genetic differentiation between populations of the montane salamander, Pseudoeurycea leprosa. Specifically, we used ecological niche modelling (ENM) and measured spatial connectivity and gene flow (using both mtDNA and microsatellite markers) across extant populations of P. leprosa in the Trans-Mexican Volcanic Belt (TVB). Our results indicate significant spatial and genetic isolation among populations, but we cannot distinguish between isolation by distance over time or current landscape barriers as mechanisms shaping population genetic divergences. Combining ecological niche modelling, spatial connectivity analyses, and historical and contemporary genetic signatures from different classes of genetic markers allows for inference of historical evolutionary processes and predictions of the impacts future climate change will have on the genetic diversity of montane taxa with low dispersal rates. Pseudoeurycea leprosa is one montane species among many endemic to this region and thus is a case study for the continued persistence of spatially and genetically isolated populations in the highly biodiverse TVB of central Mexico.  相似文献   

4.
Abstract: Eucalyptus tereticornis seedlings occurring on the edges of grassy balds on the Bunya Mountains were burnt by four separate fires. From the results, a logistic model demonstrated that lignotuber size was positively related and fire temperature negatively related to survivorship. While mortality was high for young seedlings there was no mortality of 5‐year old survivors from these trials subject to repeat burning. The model predicted that burning every 2 years will not substantially limit seedling establishment. This prediction was strengthened by results verifying that management fires on the grassy balds are generally of low intensity. Fire intensity is weakly related to a Fire Danger Index, indicating that the timing of burning in relation to weather conditions will not substantially enhance opportunities for more intense fires. Thus, even with biennial burning under optimal conditions eucalypt forest will replace grassy balds where they adjoin. Regular burning by aborigines may have maintained grassy bald‐rainforest boundaries, but not boundaries with eucalypt forest. Seed dispersal and migration barriers may have limited the expansion of eucalypt forest. It is concluded that under current conditions the long‐term preservation of the grassy balds is only possible where they are entirely surrounded by rainforest and are regularly burnt.  相似文献   

5.
Metapopulation persistence in fragmented landscapes depends on habitat patches that can support resilient local populations and sufficient connectivity between patches. Yet epidemiological theory for metapopulations has largely overlooked the capacity of particular patches to act as refuges from disease, and has suggested that connectivity can undermine persistence. Here, we show that relatively warm and saline wetlands are environmental refuges from chytridiomycosis for an endangered Australian frog, and act jointly with connectivity to sustain frog metapopulations. We coupled models of microclimate and infection probability to map chytrid prevalence, and demonstrate a strong negative relationship between chytrid prevalence and the persistence of frog populations. Simulations confirm that frog metapopulations are likely to go extinct when they lack environmental refuges from disease and lose connectivity between patches. This study demonstrates that environmental heterogeneity can mediate host–pathogen interactions in fragmented landscapes, and provides evidence that connectivity principally supports host metapopulations afflicted by facultative pathogens.  相似文献   

6.
Impending land-use change, including agricultural intensification, is increasingly threatening biodiversity in traditional rural landscapes. To ensure the persistence of species that are vulnerable to land-use change it is necessary to identify and protect high quality habitat before species start to decline. Given that many potentially vulnerable species are still widespread in traditional rural landscapes, it is difficult to identify particularly important locations for such species. Presence–absence data on a given species may have limited application in such cases. As an alternative to presence–absence data, we investigated the influence of environmental variables on the physiological body condition of Bombina variegata (yellow-bellied toad) in a traditional rural landscape in Transylvania, Romania. The species is internationally endangered but remains common throughout our study area. Based on body condition measurements of 550 toads from 60 ponds, we found that toads in forest ponds had significantly better body condition than those in pasture ponds, indicating that forest landscapes provided particularly high quality habitat. We suggest that measures such as body condition—in addition to distribution data—could have considerable application in identifying high quality habitat for other species that are still widespread in traditional landscapes, but have declined in modernised, but otherwise similar landscapes.  相似文献   

7.
Human activity has been widely implicated in the origin and expansion of montane grasslands in East Africa, yet little palaeoecological evidence exists to test whether these grasslands are natural or secondary. Pollen and charcoal data derived from two Holocene records in the Eastern Arc mountains of Tanzania are used as a case study to investigate the supposed secondary nature of montane grasslands in Africa. Fossil pollen data are used to detect vegetation change, and charcoal analysis is used to reconstruct fire history. The pollen data are characterised by stable proportions of local taxa suggesting permanence of grasslands throughout the past ~13,000 years. Recent increases in fire adapted taxa such as Morella point towards the development of a grassland/forest patch mosaic possibly associated with burning. However, robust evidence of human activity is absent from the records, which may be attributed to the late human occupation of the mountains. The records indicate long-term persistence of grasslands which, coupled with a lack of evidence of human activity, suggests that these grasslands are not secondary. These data support the hypothesis that grasslands are an ancient and primary component of montane vegetation in Africa, but that they experienced some expansion during the late Holocene as a result of changing fire regime.  相似文献   

8.
Habitat loss and fragmentation are major threats to the conservation of nonhuman primates. Given that species differ in their responses to fragmented landscapes, identifying the factors that enable them to cope with altered environments or that cause their extirpation is critical to design conservation management strategies. Howler monkeys (Alouatta spp.) are good models for studying the strategies of tolerant arboreal taxa and how they cope with spatial restriction, because they live in habitats ranging from vast pristine forests to small disturbed fragments and orchards. While some aspects of their ecology and behavior are conserved, others vary in predictable ways in response to habitat shrinking and decreasing resource availability. We argue that the ability of individual howler monkeys to inhabit low-quality environments does not guarantee the long-term persistence of the small populations that live under these conditions. Their local extirpation explains why few forest fragments below a given area threshold are frequently inhabited in landscapes where recolonization and gene flow are compromised by long isolation distances or less permeable matrices. In sum, howlers’ ability to cope with habitat restriction at the individual level in the short-term may mask the inevitable fate of isolated populations, thereby compromising the persistence of the species at a regional scale in the long-term if howlers’ need for protection in large forests is undervalued.  相似文献   

9.
Both forest fragmentation and overhunting have profound effects on the structure of large-vertebrate assemblages in neotropical forests. However, the long-term value of habitat fragments for forest mammals remains poorly understood and few regional scale studies have replicated sampling across spatially independent landscapes. Here, we assess the species occupancy and abundance of midsized to large-bodied mammals within three neighbouring Amazonian forest landscapes varying widely in extent of forest cover. One of these consisted of forest fragments surrounded by semi-natural scrub savannahs that had been occupied by paleoindian populations for at least 7,000 years, whereas forest cover in the other two landscapes was either variegated or continuous. Data on species occurrence and abundance from diurnal and nocturnal line-transect surveys and local interviews in each landscape were used to examine the effects of forest cover and hunting pressure on mammal persistence within forest patches. The extent of forest cover was a key determinant of species persistence across the three landscapes, but populations of large-bodied species were either reduced or driven to local extinction by hunting even in the most forested and least fragmented landscape. Many game and non-game species persisted in forest isolates, even though, individually, these were likely too small to support viable populations. This study indicates that even small, long-term forest fragments may retain significant conservation value if they can be managed within the context of enhanced connectivity across wider fragmented landscapes.  相似文献   

10.
Around the world, many species are confined to “Sky Islands,” with different populations in isolated patches of montane habitat. How does this pattern arise? One scenario is that montane species were widespread in lowlands when climates were cooler, and were isolated by local extinction caused by warming conditions. This scenario implies that many montane species may be highly susceptible to anthropogenic warming. Here, we test this scenario in a montane lizard (Sceloporus jarrovii) from the Madrean Sky Islands of southeastern Arizona. We combined data from field surveys, climate, population genomics, and physiology. Overall, our results support the hypothesis that this species' current distribution is explained by local extinction caused by past climate change. However, our results for this species differ from simple expectations in several ways: (a) their absence at lower elevations is related to warm winter temperatures, not hot summer temperatures; (b) they appear to exclude a low‐elevation congener from higher elevations, not the converse; (c) they are apparently absent from many climatically suitable but low mountain ranges, seemingly “pushed off the top” by climates even warmer than those today; (d) despite the potential for dispersal among ranges during recent glacial periods (~18,000 years ago), populations in different ranges diverged ~4.5–0.5 million years ago and remained largely distinct; and (e) body temperatures are inversely related to climatic temperatures among sites. These results may have implications for many other Sky Island systems. More broadly, we suggest that Sky Island species may be relevant for predicting responses to future warming.  相似文献   

11.
黑斑羚粪便中碳同位素揭示的食性变化   总被引:1,自引:0,他引:1  
利用稳定碳同位素数据(δ13C)分析了南非克鲁格国家公园混食性黑斑羚(Aepyceros melampus)时间和空间尺度上的食性变化,验证了两个假说,即有蹄类食性变化是由生境中木本植物与草本植物的相对配比导致;降雨控制有蹄类生态。结果表明:黑斑羚的食性涵盖了精食者-粗食者采食谱系,且食性中木本与草本比例在不同月间、季节、年度和区域间存在很大变化。栖息于开放性热带稀树草原和草原中的黑斑羚通常采食比生境中更高比例的草本,但在时间尺度上并不恒定。在克鲁格北部的一个区域(Punda Maria) ,黑斑羚采食的草本比克鲁格国家公园中其它任何区域都多。与其它生境相比,在河边的黑斑羚采食草本数量更少,尤其是在食性空间变化更为明显的旱季。因此,我们的数据不支持有蹄类食性组成变化是由生境中木本与草本比例不同造成的假说,食性与降雨量间也无明显的关系。我们的结果支持草本中蛋白含量增加引起黑斑羚采食比例的增加这一模型。粪便中氮含量在时间和空间上的变化很小,揭示在可利用食物中,无论木本还是草本,黑斑羚进行选择采食以保证最好的食物质量。基于这些结果,我们认为更具体的食物选择和可利用性最适采食理论能够更好地解释这种生态学变化。  相似文献   

12.
城市菌根真菌多样性、变化机制及功能应用   总被引:1,自引:0,他引:1  
陈云  马克明 《生态学报》2016,36(14):4221-4232
菌根真菌能够与大多数陆生植物的根系形成菌根共生体,具有改善宿主植物矿质营养、增强抗逆性、改良土壤结构等重要生态功能。城市化过程中气候、土壤、植被、土地利用等因素的改变,对菌根真菌的多样性产生了直接或间接的影响。目前城市菌根真菌的研究多侧重对其空间分布及群落组成的简单描述,缺乏针对城市典型生态现象及生态问题系统性的探讨。分别从城市菌根真菌的多样性变化、影响机制及功能应用等3方面进行了综述,全面揭示城市菌根真菌的研究现状及研究的复杂性,发现当前研究存在多样性评估简单化、研究层次单一化、内在机制现象化及功能应用停滞化等问题,认为今后应建立更为系统、综合、标准的研究体系以深刻而准确地认识与理解城市化对菌根真菌多样性的影响,为城市微生物资源的保存及绿地系统维持提供理论依据。  相似文献   

13.
Savannas are defined based on vegetation structure, the central concept being a discontinuous tree cover in a continuous grass understorey. However, at the high‐rainfall end of the tropical savanna biome, where heavily wooded mesic savannas begin to structurally resemble forests, or where tropical forests are degraded such that they open out to structurally resemble savannas, vegetation structure alone may be inadequate to distinguish mesic savanna from forest. Additional knowledge of the functional differences between these ecosystems which contrast sharply in their evolutionary and ecological history is required. Specifically, we suggest that tropical mesic savannas are predominantly mixed tree–C4 grass systems defined by fire tolerance and shade intolerance of their species, while forests, from which C4 grasses are largely absent, have species that are mostly fire intolerant and shade tolerant. Using this framework, we identify a suite of morphological, physiological and life‐history traits that are likely to differ between tropical mesic savanna and forest species. We suggest that these traits can be used to distinguish between these ecosystems and thereby aid their appropriate management and conservation. We also suggest that many areas in South Asia classified as tropical dry forests, but characterized by fire‐resistant tree species in a C4 grass‐dominated understorey, would be better classified as mesic savannas requiring fire and light to maintain the unique mix of species that characterize them.  相似文献   

14.
Dispersal has long been recognized as a mechanism that shapes many observed ecological and evolutionary processes. Thus, understanding the factors that promote its evolution remains a major goal in evolutionary ecology. Landscape connectivity may mediate the trade-off between the forces in favour of dispersal propensity (e.g. kin-competition, local extinction probability) and those against it (e.g. energetic or survival costs of dispersal). It remains, however, an open question how differing degrees of landscape connectivity may select for different dispersal strategies. We implemented an individual-based model to study the evolution of dispersal on landscapes that differed in the variance of connectivity across patches ranging from networks with all patches equally connected to highly heterogeneous networks. The parthenogenetic individuals dispersed based on a flexible logistic function of local abundance. Our results suggest, all else being equal, that landscapes differing in their connectivity patterns will select for different dispersal strategies and that these strategies confer a long-term fitness advantage to individuals at the regional scale. The strength of the selection will, however, vary across network types, being stronger on heterogeneous landscapes compared with the ones where all patches have equal connectivity. Our findings highlight how landscape connectivity can determine the evolution of dispersal strategies, which in turn affects how we think about important ecological dynamics such as metapopulation persistence and range expansion.  相似文献   

15.
Insect and veteran trees are important parts of ecosystems and are usually included in ecological studies of forest management. The loss of veteran trees in woodlands and open landscapes would lead to the loss of saproxylic organisms—an important part of biodiversity. Hence, the persistence of many specialized insects depends on the presence of veteran trees scattered in woodlands (e.g. ancient wood pastures, game parks or protected areas), cities, towns and villages (e.g. avenues, parks or chateau parks) or open landscapes (e.g. fishpond dams, solitary trees or fruit orchards). Veteran tree conditions could be fairly well described by three components—diameter, age and microhabitats present. The problem is that diameter belongs to the most studied characteristics, while age and microhabitats, which can be quite complicated to measure, are much less studied. This paper illustrates that, due to this unbalanced use of indicators of veteran-tree conditions, we are still missing some important information on saproxylic species ecology—and sometimes only large trees might be studied, rather than real veterans. Although we already know that veteran trees are essential habitat for a range of saproxylic organisms, there are still gaps in our knowledge of the specific conditions that veteran trees provide. It is vital that these are quantified and understood so that this information can be used to conserve veteran trees and their associated species.  相似文献   

16.
Recent speciation research has generally focused on how lineages that originate in allopatry evolve intrinsic reproductive isolation, or how ecological divergence promotes nonallopatric speciation. However, the ecological basis of allopatric isolation, which underlies the most common geographic mode of speciation, remains poorly understood and largely unstudied. Here, we explore the ecological and evolutionary factors that promote speciation in Desmognathus and Plethodon salamanders from temperate eastern North America. Based on published molecular phylogenetic estimates and the degree of geographic range overlap among extant species, we find strong evidence for a role for geographic isolation in speciation. We then examine the relationship between climatic variation and speciation in 16 sister-taxon pairs using geographic information system maps of climatic variables, new methods for modeling species' potential geographic distributions, and data on geographic patterns of genetic variation. In contrast to recent studies in tropical montane regions, we found no evidence for parapatric speciation along climatic gradients. Instead, many montane sister taxa in the Appalachian Highlands inhabit similar climatic niches and seemingly are allopatric because they are unable to tolerate the climatic conditions in the intervening lowlands. This temporal and spatial-ecological pattern suggests that niche conservatism, rather than niche divergence, plays the primary role in promoting allopatric speciation and montane endemism in this species-rich group of vertebrates. Our results demonstrate that even the relatively subtle climatic differences between montane and lowland habitats in eastern North America may play a key role in the origin of new species.  相似文献   

17.
Referring to the case studies of two cities in Northern Italy, this article seeks to understand how Bangladeshi migrants use associations to seek transnational “ways of belonging” and “ways of being”. It analyses how this transnational attachment to their home country has played an important role in building their own “community”. The findings reveal that Bangladeshi migrant organizations work to maintain “transnational ways of belonging” by enabling migrants to retain their cultural roots; this is reflected in their observation of festivals, national days, and other practices and rituals. Although, as a relatively new migrant community, they do not share as many economic links through these associations as many other “diasporic” organizations, migrants widely express a sense that these economic connections are with their country of origin. However, there is competition within the community based on regional origin, as well as have many ambivalences and contradictions.  相似文献   

18.
The global distribution of exotic species is the result of abiotic, biotic and dispersal filtering processes that shape the movement and success of species outside their native range. In this study we aim to understand how these filtering processes drive the fluxes of grass species among regions, the factors that influence which species establish outside of their native range, and where they do so. We used national and subnational checklists of native and introduced grass species to determine the extent to which each region was a source or recipient of exotic grass species. We asked how species traits may distinguish those grass species that have naturalized outside their native range from those that have not, and how environmental conditions are related to the distribution of exotic grass species. We found that exotic grass establishment is shaped by an array of factors including characteristics of regions, traits of species and their interactions. Regions with a longer history of human occupation and larger numbers of native grass species were generally the most important sources of exotic species. Global flows of species were mostly driven by a climate match between the native and exotic ranges, but were also highly asymmetric, with regions with recent human arrival being the major hosts of exotic grass species. Tall, annual and C4 grass species exhibited particularly high probabilities of establishment outside their native range. Despite the idiosyncrasy and stochasticity characteristic of exotic species establishment, this biogeographical analysis revealed important generalities across this large plant group. Our results suggest that grass species that have co-occurred with humans for a longer time may be better adapted to living in anthropogenic landscapes, explaining the global asymmetry in species introductions.  相似文献   

19.
Terrestrial vertebrates show striking changes in species richness across topographic gradients. For mammals, nearly twice as many species per unit area occur in topographically complex regions as in adjacent lowlands. The geological context of this pervasive biogeographic pattern suggests that tectonic processes have a first‐order impact on regional diversity. I evaluate ecological, evolutionary, and historical influences of tectonics and topography on the regional diversity of terrestrial mammals, focusing on the hypothesis that diversification rates are higher in active versus passive tectonic settings. Ten predictions follow from this hypothesis. 1) The timing of peaks in speciation should be congruent with the timescale for tectonic episodes. 2) The rates of speciation and genetic differentiation of populations should be greater for species inhabiting topographically complex regions than spatially continuous landscapes. 3) If topographic complexity per se promotes diversification, then a cluster of young divergences should occur for montane species compared to lowland relatives. 4) Endemism in tectonically active regions should reflect origination within the region rather than range reduction from larger areas. 5) Extinction rates should differ for lineages in tectonically active regions compared to adjacent lowlands. 6) The relationship between local and regional species richness should differ between topographic settings because of higher beta diversity in topographically complex regions. 7) Species originating in topographically complex regions should colonize adjacent lowlands more often than the reverse pattern. 8) North‐south mountain ranges should have higher regional species richness than east‐west mountain ranges. 9) Areas with multiple mountain ranges should have higher regional species richness than comparable areas with single mountain ranges. 10) Global climate changes should affect diversification in tectonically active regions. Research addressing these topics places elevational diversity gradients into a geohistorical context and integrates data from modern biotas and the fossil record.  相似文献   

20.
'C4 photosynthesis' refers to a suite of traits that increase photosynthesis in high light and high temperature environments. Most C4 plants are grasses, which dominate tropical and subtropical grasslands and savannas but are conspicuously absent from cold growing season climates. Physiological attributes of C4 photosynthesis have been invoked to explain C4 grass biogeography; however, the pathway evolved exclusively in grass lineages of tropical origin, suggesting that the prevalence of C4 grasses in warm climates could be due to other traits inherited from their non-C4 ancestors. Here we investigate the relative influences of phylogeny and photosynthetic pathway in determining the ecological distributions of C4 grasses in Hawaii. We find that the restriction of C4 grasses to warmer areas is due largely to their evolutionary history as members of a warm-climate grass clade, but that the pathway does appear to confer a competitive advantage to grasses in more arid environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号