首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Freeliving workers of Formica occulta, an ant species enslaved by the obligatory slavemaking ant Polyergus breviceps, retrieve and nurse Polyergus pupaejust as well as conspecific pupae in a choice test. No such attraction was found toward pupae of the facultative slavemaker; Formica wheeleri,which also enslaves F. occulta. Formica neogagates,a sympatric species which is not parasitized by either slavemaker, preferentially retrieves and tends conspecific brood over that of Polyergusand F. wheeleri.It is proposed that brood of obligatory slavemaking species must possess an attractive pheromone for slavemaker colony foundation to be successful, since slavemaker brood must be nursed by adult slave workers with no prior exposure to slavemaker brood. An attractive pheromone is not necessary in the brood of facultative slavemakers, since this brood is cared for by newly eclosed slave workers who imprint on the slavemaker brood.  相似文献   

2.
Summary. Groups of enslaved Formica fusca workers from mixed colonies of Polyergus rufescens with numerous slave workforce tend to split off and found small and almost homospecific nests around the main nest, with at least some of them connected with the latter with underground passages. Their inhabitants are able, at least temporarily, to adopt young F. fusca gynes. P. rufescens invades these satellite nests in a manner similar to the normal slave raids, and carries the slaves back to the main nest. The supposed evolutionary cause of this behaviour is to keep integrity of mixed colonies and prevent possible emancipation of slaves.Received 18 August 2004; revised 27 September 2004; accepted 11 October 2004.  相似文献   

3.
Comparisons of cuticular hydrocarbons between workers of the dulotic ant Polyergus samurai and its slave, Formica japonica, were carried out. Gas chromatography–mass spectrometry showed that the slave‐maker and its slave shared the major cuticular hydrocarbon compounds, but possessed several minor products unique to each species. No difference in hydrocarbon composition was detected between enslaved and free‐living F. japonica workers, suggesting that association with P. samurai has no qualitative effect on hydrocarbon composition in these ants. Principal component analyses of the cuticular hydrocarbon profiles (CHP) revealed that (i) CHP was species specific in a given mixed colony; and (ii) among mixed colonies, P. samurai workers had species‐colony specific CHP, while the same feature was not always found in enslaved and free‐living F. japonica workers. Therefore, a ‘uniform colony odor’ in terms of CHP is not achieved in naturally mixed colonies of P. samurai nor those of its slaves, F. japonica.  相似文献   

4.
Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae) is an indigenous larval endoparasitoid of Busseola fusca (Fuller) (Lepidoptera: Noctuidae) in sub-Saharan Africa. In Kenya, reports suggest that C. sesamiae occurs as two biotypes. Biotype avirulent to B. fusca gets encapsulated by haemocytes in this host and is unable to complete development. Biotype virulent to B. fusca is able to overcome immune defences. Factors present in the calyx fluid such as the PolyDNAviruses (PDV), venom and calyx fluid proteins have been implicated in the variation of C. sesamiae virulence against B. fusca. In the present study, calyx fluid proteins of the two C. sesamiae biotypes were compared using 2-D gel electrophoresis. More protein spots were observed in the virulent parasitoid calyx fluid, but some proteins were specifically observed in the avirulent parasitoid calyx fluid while others were observed in both. To study changes in proteins due to parasitism of B. fusca larvae by the two strains, SDS-PAGE gel were performed on fat body tissues and the haemolymph at three time points. Differences between the two strains were observed in both the fat body and haemolymph tissues. Parasitism-specific protein bands were detectable in fat body tissues of B. fusca larvae parasitized by the two C. sesamiae strains. These proteins were absent in unparasitized larvae. Implications for using C. sesamiae as a biocontrol agent of B. fusca in Africa are discussed.  相似文献   

5.
The cognitive challenges that social animals face depend on species differences in social organization and may affect mosaic brain evolution. We asked whether the relative size of functionally distinct brain regions corresponds to species differences in social behaviour among paper wasps (Hymenoptera: Vespidae). We measured the volumes of targeted brain regions in eight species of paper wasps. We found species variation in functionally distinct brain regions, which was especially strong in queens. Queens from species with open-comb nests had larger central processing regions dedicated to vision (mushroom body (MB) calyx collars) than those with enclosed nests. Queens from advanced eusocial species (swarm founders), who rely on pheromones in several contexts, had larger antennal lobes than primitively eusocial independent founders. Queens from species with morphologically distinct castes had augmented central processing regions dedicated to antennal input (MB lips) relative to caste monomorphic species. Intraspecific caste differences also varied with mode of colony founding. Independent-founding queens had larger MB collars than their workers. Conversely, workers in swarm-founding species with decentralized colony regulation had larger MB calyx collars and optic lobes than their queens. Our results suggest that brain organization is affected by evolutionary transitions in social interactions and is related to the environmental stimuli group members face.  相似文献   

6.
Division of labor among workers is a key feature of social insects and frequently characterized by an age‐related transition between tasks, which is accompanied by considerable structural changes in higher brain centers. Bumble bees (Bombus terrestris), in contrast, exhibit a size‐related rather than an age‐related task allocation, and thus workers may already start foraging at two days of age. We ask how this early behavioral maturation and distinct size variation are represented at the neuronal level and focused our analysis on the mushroom bodies (MBs), brain centers associated with sensory integration, learning and memory. To test for structural neuronal changes related to age, light exposure, and body size, whole‐mount brains of age‐marked workers were dissected for synapsin immunolabeling. MB calyx volumes, densities, and absolute numbers of olfactory and visual projection neuron (PN) boutons were determined by confocal laser scanning microscopy and three‐dimensional image analyses. Dark‐reared bumble bee workers showed an early age‐related volume increase in olfactory and visual calyx subcompartments together with a decrease in PN‐bouton density during the first three days of adult life. A 12:12  h light‐dark cycle did not affect structural organization of the MB calyces compared to dark‐reared individuals. MB calyx volumes and bouton numbers positively correlated with body size, whereas bouton density was lower in larger workers. We conclude that, in comparison to the closely related honey bees, neuronal maturation in bumble bees is completed at a much earlier stage, suggesting a strong correlation between neuronal maturation time and lifestyle in both species.  相似文献   

7.
Hymenoptera possess voluminous mushroom bodies (MBs), brain centres associated with sensory integration, learning and memory. The mushroom body input region (calyx) is organized in distinct synaptic complexes (microglomeruli, MG) that can be quantified to analyse body size-related phenotypic plasticity of synaptic microcircuits in these small brains. Leaf-cutting ant workers (Atta vollenweideri) exhibit an enormous size polymorphism, which makes them outstanding to investigate neuronal adaptations underlying division of labour and brain miniaturization. We particularly asked how size-related division of labour in polymorphic workers is reflected in volume and total numbers of MG in olfactory calyx subregions. Whole brains of mini, media and large workers were immunolabelled with anti-synapsin antibodies, and mushroom body volumes as well as densities and absolute numbers of MG were determined by confocal imaging and three-dimensional analyses. The total brain volume and absolute volumes of olfactory mushroom body subdivisions were positively correlated with head widths, but mini workers had significantly larger MB to total brain ratios. Interestingly, the density of olfactory MG was remarkably independent from worker size. Consequently, absolute numbers of olfactory MG still were approximately three times higher in large compared with mini workers. The results show that the maximum packing density of synaptic microcircuits may represent a species-specific limit to brain miniaturization.  相似文献   

8.
The green-bottle fly Lucilia caesar and the housefly Musca domestica differ greatly in the number of neuroblasts producing mushroom bodies. Four neuroblasts were found in each mushroom body of Lucilia pupae, and its calyx has a quadruple structure. In the housefly, the number of mushroom body neuroblasts rises up 20 in each brain hemisphere. This leads to a more complicated calyx structure. The neuroblast number observed in Lucilia and Musca is compared with that found in other Diptera.  相似文献   

9.
Queens of the slave-making ant, Polyergus breviceps, take over nests of adult Formica workers when establishing new colonies. Although naïve to slave-maker brood, the usurped Formica rear Polyergus offspring and nests containing both host and parasite species forms. Host worker acceptance of parasite brood has been attributed to the similarity of brood tending signals between these closely related taxa and/or the presence of an attractive pheromone in the slave-maker brood. By presenting single-species groups of Formica occulta and Formica gnava (two host species of P. breviceps) with a choice of Formica pupae of both species or with a choice of P. breviceps pupae from both types of mixed-species nests, it seems that neither close phylogenetic relatedness nor an attractive brood odor alone can account for the propensity of host workers to adopt slave-maker pupae. Significantly greater numbers of P. breviceps pupae were adopted by enslaved workers than by free-living workers, and within the enslaved groups and the free-living F. gnava group, greater numbers of P. breviceps pupae were adopted if they were from nests where the host species was conspecific to workers used in tests. When presented with F. gnava and F. occulta pupae, Formica workers adopted conspecific pupae almost exclusively and ignored or consumed pupae of the other host species. Taken together, these results imply that P. breviceps pupae have both a species-specific odor and a general brood-tending pheromone, upon which a host odor may be imposed. The disparate requirements of immatures at different stages of development for cue specificity or generality in maintaining nest exclusivity and maximizing inclusive fitness are discussed.  相似文献   

10.
通过Mallory和HE染色,对光肩星天牛Anoplophora glabnpenn脑部显微结构进行了观察.结果表明,光肩星天牛的脑由前脑、中脑、后脑三部分组成.前脑叶髓层包括一对蕈形体、一个中央体、一个脑桥体和一对附叶,其中每个蕈形体仅有一个帽状的蕈体冠.中脑触角叶较大,由九簇放射状排列的触角神经束组成,中央的一束较粗,说明其嗅觉发达.后脑较小.  相似文献   

11.
《Developmental neurobiology》2017,77(9):1072-1085
Brain compartment size allometries may adaptively reflect cognitive needs associated with behavioral development and ecology. Ants provide an informative system to study the relationship of neural architecture and development because worker tasks and sensory inputs may change with age. Additionally, tasks may be divided among morphologically and behaviorally differentiated worker groups (subcastes), reducing repertoire size through specialization and aligning brain structure with task‐specific cognitive requirements. We hypothesized that division of labor may decrease developmental neuroplasticity in workers due to the apparently limited behavioral flexibility associated with task specialization. To test this hypothesis, we compared macroscopic and cellular neuroanatomy in two ant sister clades with striking contrasts in worker morphological differentiation and colony‐level social organization: Oecophylla smaragdina , a socially complex species with large colonies and behaviorally distinct dimorphic workers, and Formica subsericea , a socially basic species with small colonies containing monomorphic workers. We quantified volumes of functionally distinct brain compartments in newly eclosed and mature workers and measured the effects of visual experience on synaptic complex (microglomeruli) organization in the mushroom bodies—regions of higher‐order sensory integration—to determine the extent of experience‐dependent neuroplasticity. We demonstrate that, contrary to our hypothesis, O. smaragdina workers have significant age‐related volume increases and synaptic reorganization in the mushroom bodies, whereas F. subsericea workers have reduced age‐related neuroplasticity. We also found no visual experience‐dependent synaptic reorganization in either species. Our findings thus suggest that changes in the mushroom body with age are associated with division of labor, and therefore social complexity, in ants. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1072–1085, 2017  相似文献   

12.
Nests of social insects are an attractive resource in terms of nutrition and shelter and therefore targeted by a variety of pathogens and parasites that harness the resources of a host colony in their own reproductive interests. Colonies of the ants Formica fusca and F. lemani serve as hosts for mound‐building Formica species, the queens of which use host colonies during colony founding. Here, we investigate whether workers of the host species can mitigate the costs imposed on them by invading parasite queens by recognizing and selectively removing eggs laid by these queens. We used behavioural assays, allowing host workers to choose between con‐colonial eggs and eggs laid by the parasite species F. truncorum. We show that workers of both host species discriminate between the two types of eggs in favour of con‐colonial eggs. Moreover, workers of F. fusca rejected more con‐colonial eggs than F. lemani. This higher rate of error in F. fusca may reflect a greater selectivity or a greater difficulty in discriminating between the two egg types. Nevertheless, both host species removed parasite eggs at a similar rate, when these were artificially introduced into the colonies, although some eggs remained after 10 d. In addition, upon receiving parasite eggs, host workers started to lay unfertilized male‐destined eggs within 6 d, thus employing an alternative pathway to gain direct fitness when the resident queen is no longer present and the colony is parasitized.  相似文献   

13.
The mushroom bodies, central neuropils in the arthropod brain, are involved in learning and memory and in the control of complex behavior. In most insects, the mushroom bodies receive direct olfactory input in their calyx region. In Hymenoptera, olfactory input is layered in the calyx. In ants, several layers can be discriminated that correspond to different clusters of glomeruli in the antennal lobes, perhaps corresponding to different classes of odors. Only in Hymenoptera, the mushroom body calyx also receives direct visual input from the optic lobes. In bees, six calycal layers receive input from different classes of visual interneurons, probably representing different parts of the visual field and different visual properties. Taken together, the mushroom bodies receive distinct multisensory information in many segregated input layers.  相似文献   

14.
Linaria azerbaijanensis and Linaria shahroudensis are described as new species from the Azerbaijan and Semnan provinces of Iran, respectively, belong to section Linaria.The new species are compared to their closest relative Linaria lineolata. Linaria azerbaijanensis differs from L. lineolata in having shorter bracts, a shorter corolla, shorter spur and smaller capsules and a different microsculpturing pattern of the testa cells. Linaria shahroudensis differs from L. lineolata in having shorter stems, shorter calyx‐lobes, a longer spur, a smaller capsule and a different microsculpturing pattern of the testa cells. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 734–742.  相似文献   

15.
A new species of Gesneriaceae, Chirita maguanensis Z.Y.Li, H.Jiang & H.Xu, is described from Southern Yunnan, China. It is similar to C. eburnea Hance in its large, fleshy, white and parallel‐veined bracts, but differs by having broad and oblique leaves with a repand–crenate or crenate margin, suborbicular bracts, membranous, white calyx, purple corolla‐tube, 2‐parted lower lip of stigma and lower disc. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 269–273.  相似文献   

16.
Summary The socially parasitic mode of founding new colonies by queens of the European amazon antPolyergus rufescens was analysed in the laboratory. Newly-mated females of this obligatory slave-maker were individually introduced into queenright and queenless artificially established colonies of bothFormica cunicularia (the slave present in the natal dulotic nest) andF. rufibarbis (another potentialServiformica host). Particular attention was devoted to the behavioural patterns displayed by these young queens during the usurpation phases. Our observations, supported also by video-taping, show that the slave-making female, before laying her eggs, must penetrate the host colony, kill the resident queen, become accepted by the adult workers and appropriate the host brood. The parasite was almost always adopted in the colonies ofF. cunicularia, whereas in the presence ofF. rufibarbis it was generally killed in a short time. The failure in the attempt of usurping the colonies ofF. rufibarbis is discussed in relation to the host specificity typical of this slave-maker. Finally, egg-laying byPolyergus successful usurpers, the subsequent eclosion of the brood, and its complete social integration in the newly-established mixed colonies were also recorded.  相似文献   

17.
Behuria comosa Tavares, Baumgratz & Goldenberg is a new species from Minas Gerais and Espírito Santo, Brazil. It can be recognized by the branch nodes, sinuses of the leaf margins and domatia comose, leaves and inflorescence axes frequently three‐whorled, flowers five(–six)‐merous, calyx lobes broadly triangular and with the apex laterally flattened, and petals glabrous, thickly apiculate. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 489–492.  相似文献   

18.
We studied recruitment behavior of the slavemaking ant Polyergus breviceps,which typically raids colonies of Formica gnava.The first test series demonstrated the importance of social context, by showing that recruitment was high during raiding, but virtually absent during preraid circling and during the return trip after a slave raid. The second test series showed that Formicapupae (alone or together with adults) must be present for workers of Polyegrusto recruit nestmates. The third test series demonstrated that panic alarm by raided Formicais caused by a pheromone, and we suggest that adults of Formicamay be the source of this secretion. Finally, the fourth test series showed that formic acid is lethal to adults of Formicabut has almost no adverse effect on Polyergus.This relative immunity by Polyergusmay enable them to remain organized while entering nests of Formicaduring slave raids.  相似文献   

19.
Neuronal architecture of the antennal lobe in Drosophila melanogaster   总被引:4,自引:0,他引:4  
Summary Computer reconstruction of the antennal lobe of Drosophila melanogaster has revealed a total of 35 glomeruli, of which 30 are located in the periphery of the lobe and 5 in its center. Several prominent glomeruli are recognizable by their location, size, and shape; others are identifiable only by their positions relative to prominent glomeruli. No obvious sexual dimorphism of the glomerular architecture was observed. Golgi impregnations revealed: (1) Five of the glomeruli are exclusive targets for ipsilateral antennal input, whereas all others receive afferents from both antennae. Unilateral amputation of the third antennal segment led to a loss of about 1000 fibers in the antennal commissure. Hence, about 5/6 of the approximately 1200 antennal afferents per side have a process that extends into the contralateral lobe. (2) Afferents from maxillary palps (most likely from basiconic sensilla) project into both ipsi-and contralateral antennal lobes, yet their target glomeruli are apparently not the same as those of antennal basiconic sensilla. (3) Afferents in the antennal lobe may also stem from pharyngeal sensilla. (4) The most prominent types of interneurons with arborizations in the antennal lobe are: (i) local interneurons ramifying in the entire lobe, (ii) unilateral relay interneurons that extend from single glomeruli into the calyx and the lateral protocerebrum (LPR), (iii) unilateral interneurons that connect several glomeruli with the LPR only, (iv) bilateral interneurons that link a small number of glomeruli in both antennal lobes with the calyx and LPR, (v) giant bilateral interneurons characterized by extensive ramifications in both antennal lobes and the posterior brain and a cell body situated in the midline of the suboesophageal ganglion, and (vi) a unilateral interneuron with extensive arborization in one antennal lobe and the posterior brain and a process that extends into the thorax. These structural results are discussed in the context of the available functional and behavioral data.Abbreviations AC antennal commissure - AMMC antennal mechanosensory and motor center - iACT, mACT, oACT inner/middle/outer antenno-cerebral tract - bACTI, uACTI bilateral/unilateral ACT relay interneuron - AN antennal nerve - AST antenno-suboesophageal tract - FAI fine arborization relay interneuron - GSI giant symmetric relay interneuron - LI local interneuron - LPR lateral protocerebrum - SOG suboesophageal ganglion - TI thoracic relay interneuron - bVI bilateral V-relay interneuron  相似文献   

20.
Body size is an important life history trait that can evolve rapidly as a result of how species interact with each other and their environment. Invasive species often encounter vastly different ecological conditions throughout their introduced range that can influence relative investment in growth, reproduction and defence among populations. In this study, we quantified variation in worker size, morphology and proportion of majors among five populations of a worldwide invasive species, the big‐headed ant, Pheidole megacephala (Fabricius). The sampled populations differed in ant community composition, allowing us to examine if P. megacephala invests differently in the size and number of majors based on the local ant fauna. We also used genetic data to determine if these populations of P. megacephala represented cryptic species or if morphological differences could be attributed to change following introduction. We found significant variation in worker mass among the populations. Both major and minor workers were largest in Australia, where the ant fauna was most diverse, and minor workers were smallest in Hawaii and Mauritius, where P. megacephala interacted with few to no other ants. We also found differences in major and minor worker morphology among populations. Majors from Mauritius had significantly larger heads (width and length) relative to whole body size than those from Hawaii and Florida. Minors had longer heads and hind tibias in South Africa compared with populations from Australia, Hawaii and Florida. The proportion of majors did not differ among populations, suggesting that these populations may not be subject to trade‐offs in investment in major size versus number. Our molecular data place all samples within the same clade, supporting that these morphologically different populations represent the same species. These results suggest that the variation in shape and morphology of major and minor workers may therefore be the result of rapid adaptation or plastic responses to local conditions. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 423–438.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号