首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Objective:

Gender and sex hormones influence the development of obesity and metabolic syndrome in humans and Göttingen minipigs. The aim of this study was to investigate possible gender differences in the metabolic response to a high energy diet in young Göttingen minipigs as a model of childhood/adolescent obesity.

Design and Methods:

Nine‐week‐old male and female Göttingen minipigs were fed restrictedly on either a low energy diet (LED) or a high energy diet (HED) for 4 months (n = 5‐7). Parameters of interest were fat percentage, visceral fat mass, plasma lipids and glucose tolerance, insulin resistance, and β‐cell function measured by oral and intravenous glucose tolerance tests.

Results:

At 11 to 12 weeks of age, after 2 weeks diet feeding, both genders on HED had increased fat percentage, glucose intolerance, decreased insulin sensitivity, and increased plasma levels of cholesterol and triglycerides (TGs). There was no gender difference in body weight (BW) or fat percentage, but males had lower glucose tolerance than females. After 3.5 to 4 months on the diets, the pigs on HED had increased BW, fat percentage, and visceral fat mass and were more glucose intolerant and insulin resistant than pigs on LED. Also increases in plasma cholesterol and TG levels were observed in the pigs on HED. Females had higher fat percentage and more visceral fat, were more insulin resistant, and had a more unfavorable lipid profile compared with males independent of diet.

Conclusion:

In conclusion, the young Göttingen minipig, and especially the female gender, seems to be a potential model for diet induced childhood/adolescent obesity and metabolic syndrome.  相似文献   

3.
4.
Inflammation in insulin-sensitive tissues (e.g., liver, visceral adipose tissue [VAT]) plays a major role in obesity and insulin resistance. Recruitment of innate immune cells drives the dysregulation of glucose and lipid metabolism. We aimed to seek the role of Toll like receptor 3 (TLR3), a pattern recognition receptor involved in innate immunity, obesity and the metabolic disorder. TLR3 expression in liver and VAT from diet induced obese mice and in VAT from overweight women was examined. Body weight, glucose homeostasis and insulin sensitivity were evaluated in TLR3 wild-type and knockout (KO) mice on a chow diet (CD) or high-fat diet for 15 weeks. At euthanasia, blood was collected, and plasma biochemical parameters and adipokines were determined with commercial kits. Flow cytometry was used to measure macrophage infiltration and activation in VAT. Standard western blot, immunohistochemistry and quantative PCR were used to assess molecules in pathways about lipid and glucose metabolism, insulin and inflammation in tissues of liver and VAT. Utilizing human and animal samples, we found that expression of TLR3 was upregulated in the liver and VAT in obese mice as well as VAT in overweight women. TLR3-deficiency protected against high-fat diet induced obesity, glucose intolerance, insulin resistance and lipid accumulation. Lipolysis was enhanced in VAT and hepatic lipogenesis was inhibited in TLR3 KO animals. Macrophages infiltration into adipose tissue was attenuated in TLR3 KO mice, accompanied with inhibition of NF-κB-dependent AMPK/Akt signaling pathway. These findings demonstrated that TLR3 ablation prevented obesity and metabolic disorders, thereby providing new mechanistic links between inflammation and obesity and associated metabolic abnormalities in lipid/glucose metabolism.  相似文献   

5.
6.
7.
8.
9.
The Otsuka Long-Evans Tokushima fatty (OLETF) rat is an animal model of type 2 diabetes, characterized by abdominal obesity, insulin resistance, hypertension, and dyslipidemia. To elucidate the underlying molecular mechanism of obesity and its related complications, we used representational difference analysis and identified the genes more abundantly and specifically expressed in the visceral adipose tissue (VAT) of obese OLETF rats compared with the diabetes-resistant counterpart, that is, Long-Evans Tokushima Otsuka (LETO) rats. By Northern blot analysis, we confirmed the differential expression of 13 genes, including 3 novel genes. The upregulated expression of well-characterized lipid metabolic enzymes, such as lipoprotein lipase, phosphoenolpyruvate carboxykinase, and cholesterol esterase, were observed in VAT of OLETF rats. We demonstrated the differential expression of secreted proteins in VAT of OLETF rats, such as thrombospondin 1 and contrapsin-like protease inhibitor. In contrast to lipid enzymes, the secreted proteins revealed exclusive mRNA expression and they were not detected in VAT of LETO rats. Furthermore, the novel genes OL-16 and OL-64 were also expressed specifically in VAT of OLETF rats and were absent in that of LETO rats and other tissues, including subdermal and brown adipose tissues. The C-terminal partial amino acid sequence of OL-64 revealed that it showed approximately 40% homology with alpha(1)-antitrypsin and it seemed to be a new member of the serine proteinase inhibitor (SERPIN) gene family. VAT of OLEFT rats had a unique gene expression profile, and the accumulated VAT-specific known and novel secreted proteins may play a role(s) in the pathogenesis of obesity and its related complications.  相似文献   

10.
11.
Animal studies have revealed the association between stearoyl-CoA desaturase 1 (SCD1) and obesity and insulin resistance. However, only a few studies have been undertaken in humans. We studied SCD1 in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) from morbidly obese patients and their association with insulin resistance, sterol regulatory element binding protein-1 (SREBP-1) and ATPase p97, proteins involved in SCD1 synthesis and degradation. The insulin resistance was calculated in 40 morbidly obese patients and 11 overweight controls. Measurements were made of VAT and SAT SCD1, SREBP-1 and ATPase p97 mRNA expression and protein levels. VAT and SAT SCD1 mRNA expression levels in the morbidly obese patients were significantly lower than in the controls (P = 0.006), whereas SCD1 protein levels were significantly higher (P < 0.001). In the morbidly obese patients, the VAT SCD1 protein levels were decreased in patients with higher insulin resistance (P = 0.007). However, SAT SCD1 protein levels were increased in morbidly obese patients with higher insulin resistance (P < 0.05). Multiple linear regressions in the morbidly obese patients showed that the variable associated with the SCD1 protein levels in VAT was insulin resistance, and the variables associated with SCD1 protein levels in SAT were body mass index (BMI) and ATPase p97. In conclusion, these data suggest that the regulation of SCD1 is altered in individuals with morbid obesity and that the SCD1 protein has a different regulation in the two adipose tissues, as well as being closely linked to the degree of insulin resistance.  相似文献   

12.
13.
Objective: To test a newly developed dual energy X‐ray absorptiometry (DXA) method for abdominal fat depot quantification in subjects with anorexia nervosa (AN), normal weight, and obesity using CT as a gold standard. Design and Methods: 135 premenopausal women (overweight/obese: n = 89, normal‐weight: n = 27, AN: n = 19); abdominal visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and total adipose tissue (TAT) areas determined on CT and DXA. Results: There were strong correlations between DXA and CT measurements of abdominal fat compartments in all groups with the strongest correlation coefficients in the normal‐weight and overweight/obese groups. Correlations of DXA and CT VAT measurements were strongest in the obese group and weakest in the AN group. DXA abdominal fat depots were higher in all groups compared to CT, with the largest % mean difference in the AN group and smallest in the obese group. Conclusion: A new DXA technique is able to assess abdominal fat compartments including VAT in premenopausal women across a large weight spectrum. However, DXA measurements of abdominal fat were higher than CT, and this percent bias was most pronounced in the AN subjects and decreased with increasing weight, suggesting that this technique may be more useful in obese individuals.  相似文献   

14.
Obesity can be considered as a low‐grade inflammatory condition, strongly linked to adverse metabolic outcomes. Obesity‐associated adipose tissue inflammation is characterized by infiltration of macrophages and increased cytokine and chemokine production. The distribution of adipose tissue impacts the outcomes of obesity, with the accumulation of fat in visceral adipose tissue (VAT) and deep subcutaneous adipose tissue (SAT), but not superficial SAT, being linked to insulin resistance. We hypothesized that the inflammatory gene expression in deep SAT and VAT is higher than in superficial SAT. A total of 17 apparently healthy women (BMI: 29.3±5.5 kg/m2) were included in the study. Body fat (dual‐energy X‐ray absorptiometry) and distribution (computed tomography) were measured, and insulin sensitivity, blood lipids, and blood pressure were determined. Inflammation‐related differences in gene expression (real‐time PCR) from VAT, superficial and deep SAT biopsies were analyzed using univariate and multivariate data analyses. Using multivariate discrimination analysis, VAT appeared as a distinct depot in adipose tissue inflammation, while the SAT depots had a similar pattern, with respect to gene expression. A significantly elevated (P < 0.01) expression of the CC chemokine receptor 2 (CCR2) and macrophage migration inhibitory factor (MIF) in VAT contributed strongly to the discrimination. In conclusion, the human adipose tissue depots have unique inflammatory patterns, with CCR2 and MIF distinguishing between VAT and the SAT depots.  相似文献   

15.

Background

FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile.

Objective

In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed.

Methods

The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot.

Results

In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group.

Conclusion

The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.  相似文献   

16.
Objective: Secreted protein acidic and rich in cysteine (SPARC) is expressed in most tissues and is also secreted by adipocytes. The associations of SPARC mRNA expression in visceral adipose tissue (VAT), subcutaneous abdominal adipose tissue (SAT), serum SPARC concentration, and metabolic parameters in Korean women are investigated. Design and Methods: This is a cross‐sectional study. Fifty‐eight women were recruited, of whom 15 women who underwent bariatric surgery for morbid obesity (BMI mean ± SD: 40.2±5.7 kg/m2), 16 who underwent metabolic surgery for type 2 diabetes (BMI: 28.9±4.5 kg/m2), and, as a control group, 27 who underwent gynecological surgery (BMI: 22.7±2.4 kg/m2). Anthropometric variables, metabolic parameters, SPARC mRNA expression in adipose tissue, and serum SPARC concentration were measured. Results: In all subjects, SPARC mRNA expression was significantly higher in SAT than in VAT. Serum SPARC concentrations (mean ± SE) in morbidly obese subjects, subjects with type 2 diabetes, and normal weight subjects were 267.3±40.2 ng/mL, 130.4±33.0 ng/mL, and 53.1±2.8 ng/mL, respectively. SPARC mRNA in SAT was significantly correlated with BMI, whereas SPARC mRNA in VAT was significantly correlated with BMI and VAT area. Serum SPARC concentration was significantly correlated with BMI, waist circumference, total adipose tissue area, and SAT area. After BMI adjustment, serum SPARC concentration was significantly correlated with fasting insulin concentration and HOMA‐IR score. Multivariate regression analysis showed that BMI and HOMA‐IR were independently associated with serum SPARC concentration. Conclusions: Serum SPARC concentration is significantly correlated with obesity indices and might be influenced by insulin resistance. These findings suggest that SPARC may contribute to the metabolic dysregulation associated with obesity in humans.  相似文献   

17.
Objective : Circulating and adipose tissue markers of iron overload are increased in subjects with obesity. The aim is to study iron signals in adipose tissue. Methods: Adipose tissue R2* values and hepatic iron concentration (HIC) were evaluated using magnetic resonance imaging (MRI) in 23 middle‐aged subjects with obesity and 20 subjects without obesity. Results: Subcutaneous (SAT) and visceral adipose tissue (VAT) R2* were increased in subjects with obesity (P = 0.004 and P = 0.008) and correlated significantly and positively with HIC in all subjects. Strikingly, most of the associations of liver iron with metabolic parameters were replicated with SAT and VAT R2*. BMI, waist circumference, fat mass, HOMA value, and C‐reactive protein positively correlated with HIC and SAT and VAT R2*. BMI or percent fat mass (but not insulin resistance) contributed independently to 26.8‐34.8% of the variance in sex‐ and age‐adjusted SAT or VAT R2* (β > 0.40, P < 0.005). Within subjects with obesity, total cholesterol independently contributed to 14.8% of sex‐ and age‐adjusted VAT iron variance (β = 0.50, P = 0.025). Conclusions: Increased R2* in adipose tissue, which might indicate iron content, runs in parallel to liver iron stores of subjects with obesity. VAT iron seems also associated with serum cholesterol within subjects with obesity.  相似文献   

18.
Accumulation of cytotoxic and T‐helper (Th)1 cells together with a loss of regulatory T cells in gonadal adipose tissue was recently shown to contribute to obesity‐induced adipose tissue inflammation and insulin resistance in mice. Human data on T‐cell populations in obese adipose tissue and their potential functional relevance are very limited. We aimed to investigate abundance and proportion of T‐lymphocyte sub‐populations in human adipose tissue in obesity and potential correlations with anthropometric data, insulin resistance, and systemic and adipose tissue inflammation. Therefore, we analyzed expression of marker genes specific for pan‐T cells and T‐cell subsets in visceral and subcutaneous adipose tissue from highly obese patients (BMI >40 kg/m2, n = 20) and lean to overweight control subjects matched for age and sex (BMI <30 kg/m2; n = 20). All T‐cell markers were significantly upregulated in obese adipose tissue and correlated with adipose tissue inflammation. Proportions of cytotoxic T cells and Th1 cells were unchanged, whereas those of regulatory T cells and Th2 were increased in visceral adipose tissue from obese compared to control subjects. Systemic and adipose tissue inflammation positively correlated with the visceral adipose abundance of cytotoxic T cells and Th1 cells but also regulatory T cells within the obese group. Therefore, this study confirms a potential role of T cells in human obesity‐driven inflammation but does not support a loss of protective regulatory T cells to contribute to adipose tissue inflammation in obese patients as suggested by recent animal studies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号