首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a consequence of global climate‐driven changes, marine ecosystems are experiencing polewards redistributions of species – or range shifts – across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south‐eastern Australia, a global hotspot for ocean warming. We identify range‐shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole‐of‐ecosystem management strategies and regular monitoring of range‐shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range‐shifting species can predict ecological consequences of multiple co‐occurring range shifts, guide ecosystem‐based adaptation to climate change and help prioritise future research and monitoring.  相似文献   

2.
Regime shifts are sudden changes in ecosystem structure that can be detected across several ecosystem components. The concept that regime shifts are common in marine ecosystems has gained popularity in recent years. Many studies have searched for the step‐like changes in ecosystem state expected under a simple interpretation of this idea. However, other kinds of change, such as pervasive trends, have often been ignored. We assembled over 300 ecological time series from seven UK marine regions, covering two to three decades. We developed state‐space models for the first principal component of the time series in each region, a common measure of ecosystem state. Our models allowed both trends and step changes, possibly in combination. We found trends in three of seven regions and step changes in two of seven regions. Gradual and sudden changes are therefore important trajectories to consider in marine ecosystems.  相似文献   

3.
Phenological, biogeographic and community shifts are among the reported responses of marine ecosystems and their species to climate change. However, despite both the profound consequences for ecosystem functioning and services, our understanding of the root causes underlying these biological changes remains rudimentary. Here, we show that a significant proportion of the responses of species and communities to climate change are deterministic at some emergent spatio-temporal scales, enabling testable predictions and more accurate projections of future changes. We propose a theory based on the concept of the ecological niche to connect phenological, biogeographic and long-term community shifts. The theory explains approximately 70% of the phenological and biogeographic shifts of a key zooplankton Calanus finmarchicus in the North Atlantic and approximately 56% of the long-term shifts in copepods observed in the North Sea during the period 1958–2009.  相似文献   

4.
Ongoing anthropogenic change is altering the planet at an unprecedented rate, threatening biodiversity, and ecosystem functioning. Species are responding to abiotic pressures at both individual and population levels, with changes affecting trophic interactions through consumptive pathways. Collectively, these impacts alter the goods and services that natural ecosystems will provide to society, as well as the persistence of all species. Here, we describe the physiological and behavioral responses of species to global changes on individual and population levels that result in detectable changes in diet across terrestrial and marine ecosystems. We illustrate shifts in the dynamics of food webs with implications for animal communities. Additionally, we highlight the myriad of tools available for researchers to investigate the dynamics of consumption patterns and trophic interactions, arguing that diet data are a crucial component of ecological studies on global change. We suggest that a holistic approach integrating the complexities of diet choice and trophic interactions with environmental drivers may be more robust at resolving trends in biodiversity, predicting food web responses, and potentially identifying early warning signs of diversity loss. Ultimately, despite the growing body of long-term ecological datasets, there remains a dearth of diet ecology studies across temporal scales, a shortcoming that must be resolved to elucidate vulnerabilities to changing biophysical conditions.  相似文献   

5.
Climate change is real. The wrangling debates are over, and we now need to move onto a predictive ecology that will allow managers of landscapes and policy makers to adapt to the likely changes in biodiversity over the coming decades. There is ample evidence that ecological responses are already occurring at the individual species (population) level. The challenge is how to synthesize the growing list of such observations with a coherent body of theory that will enable us to predict where and when changes will occur, what the consequences might be for the conservation and sustainable use of biodiversity and what we might do practically in order to maintain those systems in as good condition as possible. It is thus necessary to investigate the effects of climate change at the ecosystem level and to consider novel emergent ecosystems composed of new species assemblages arising from differential rates of range shifts of species. Here, we present current knowledge on the effects of climate change on biotic interactions and ecosystem services supply, and summarize the papers included in this volume. We discuss how resilient ecosystems are in the face of the multiple components that characterize climate change, and suggest which current ecological theories may be used as a starting point to predict ecosystem-level effects of climate change.  相似文献   

6.
Freshwater discharge from rivers is a powerful forcing agent in coastal ecosystems. It not only generates strong ecological effects in estuaries, but also drives the dynamics of nearshore marine waters where prominent river plumes form biogeochemical hot spots in coastal seas worldwide. Large plumes from major rivers exert important controls on pelagic processes. The majority of estuaries are smaller, however, and the importance of the smaller plumes they generate is unknown. We measured the degree of coupling between freshwater flow and inshore zooplankton in such a plume from a subtropical estuary on the east coast of Australia. Flow regimes encompassed long periods of low freshwater input, punctuated by pulsed freshets that initiated the formation of buoyant, lower‐salinity plumes in the nearshore marine zone. Plumes stimulated phytoplankton biomass in the receiving waters, and ultimately changes in zooplankton assemblages. Zooplankton responded strongly to river discharge: (1) in the absence of substantial freshwater flows and plumes, zooplankton was broadly similar in density and biomass across the estuarine‐marine gradient; (2) freshets that generated significant plumes strongly modified hydrological conditions and lowered zooplankton in the estuarine and nearshore waters, and (3) after the initial freshet, zooplankton in the residual plume was at a higher density in nearshore than shelf waters. We demonstrate that coupling between riverine and coastal pelagic systems operates in small plumes, but that there is substantial temporal variance linked to fluctuations in freshwater delivery. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The effects of anthropogenic climate change on biodiversity are well known for some high‐profile Australian marine systems, including coral bleaching and kelp forest devastation. Less well‐published are the impacts of climate change being observed in terrestrial ecosystems, although ecological models have predicted substantial changes are likely. Detecting and attributing terrestrial changes to anthropogenic factors is difficult due to the ecological importance of extreme conditions, the noisy nature of short‐term data collected with limited resources, and complexities introduced by biotic interactions. Here, we provide a suite of case studies that have considered possible impacts of anthropogenic climate change on Australian terrestrial systems. Our intention is to provide a diverse collection of stories illustrating how Australian flora and fauna are likely responding to direct and indirect effects of anthropogenic climate change. We aim to raise awareness rather than be comprehensive. We include case studies covering canopy dieback in forests, compositional shifts in vegetation, positive feedbacks between climate, vegetation and disturbance regimes, local extinctions in plants, size changes in birds, phenological shifts in reproduction and shifting biotic interactions that threaten communities and endangered species. Some of these changes are direct and clear cut, others are indirect and less clearly connected to climate change; however, all are important in providing insights into the future state of terrestrial ecosystems. We also highlight some of the management issues relevant to conserving terrestrial communities and ecosystems in the face of anthropogenic climate change.  相似文献   

8.
Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems.  相似文献   

9.
Abrupt and rapid ecosystem shifts (where major reorganizations of food-web and community structures occur), commonly termed regime shifts, are changes between contrasting and persisting states of ecosystem structure and function. These shifts have been increasingly reported for exploited marine ecosystems around the world from the North Pacific to the North Atlantic. Understanding the drivers and mechanisms leading to marine ecosystem shifts is crucial in developing adaptive management strategies to achieve sustainable exploitation of marine ecosystems. An international workshop on a comparative approach to analysing these marine ecosystem shifts was held at Hamburg University, Institute for Hydrobiology and Fisheries Science, Germany on 1-3 November 2010. Twenty-seven scientists from 14 countries attended the meeting, representing specialists from seven marine regions, including the Baltic Sea, the North Sea, the Barents Sea, the Black Sea, the Mediterranean Sea, the Bay of Biscay and the Scotian Shelf off the Canadian East coast. The goal of the workshop was to conduct the first large-scale comparison of marine ecosystem regime shifts across multiple regional areas, in order to support the development of ecosystem-based management strategies.  相似文献   

10.
The study of a Posidonia australis sediment archive has provided a record of ecosystem dynamics and processes over the last 600 years in Oyster Harbour (SW Australia). Ecosystem shifts are a widespread phenomenon in coastal areas, and this study identifies baseline conditions and the time‐course of ecological change (cycles, trends, resilience and thresholds of ecosystem change) under environmental stress in seagrass‐dominated ecosystem. The shifts in the concentrations of chemical elements, carbonates, sediments <0.125 mm and stable carbon isotope signatures (δ13C) of the organic matter were detected between 1850s and 1920s, whereas the shift detected in P concentration occurred several decades later (1960s). The first degradation phase (1850s–1950s) follows the onset of European settlement in Australia and was characterized by a strong increase in sediment accumulation rates and fine‐grained particles, driven primarily by enhanced run‐off due to land clearance and agriculture in the catchment. About 80% of total seagrass area at Oyster Harbour was lost during the second phase of environmental degradation (1960s until present). The sharp increase in P concentration and the increasing contribution of algae and terrestrial inputs into the sedimentary organic matter pool around 1960s provides compelling evidence of the documented eutrophication of the estuary and the subsequent loss of seagrass meadows. The results presented demonstrate the power of seagrass sedimentary archives to reconstruct the trajectories of anthropogenic pressures on estuarine ecosystem and the associated regime shifts, which can be used to improve the capacity of scientists and environmental managers to understand, predict and better manage ecological change in these ecosystems.  相似文献   

11.
《Global Change Biology》2018,24(6):2416-2433
Sustained observations of marine biodiversity and ecosystems focused on specific conservation and management problems are needed around the world to effectively mitigate or manage changes resulting from anthropogenic pressures. These observations, while complex and expensive, are required by the international scientific, governance and policy communities to provide baselines against which the effects of human pressures and climate change may be measured and reported, and resources allocated to implement solutions. To identify biological and ecological essential ocean variables (EOVs) for implementation within a global ocean observing system that is relevant for science, informs society, and technologically feasible, we used a driver‐pressure‐state‐impact‐response (DPSIR) model. We (1) examined relevant international agreements to identify societal drivers and pressures on marine resources and ecosystems, (2) evaluated the temporal and spatial scales of variables measured by 100+ observing programs, and (3) analysed the impact and scalability of these variables and how they contribute to address societal and scientific issues. EOVs were related to the status of ecosystem components (phytoplankton and zooplankton biomass and diversity, and abundance and distribution of fish, marine turtles, birds and mammals), and to the extent and health of ecosystems (cover and composition of hard coral, seagrass, mangrove and macroalgal canopy). Benthic invertebrate abundance and distribution and microbe diversity and biomass were identified as emerging EOVs to be developed based on emerging requirements and new technologies. The temporal scale at which any shifts in biological systems will be detected will vary across the EOVs, the properties being monitored and the length of the existing time‐series. Global implementation to deliver useful products will require collaboration of the scientific and policy sectors and a significant commitment to improve human and infrastructure capacity across the globe, including the development of new, more automated observing technologies, and encouraging the application of international standards and best practices.  相似文献   

12.
The degree to which marine ecosystems may support the pelagic or benthic food chain has been shown to vary across natural and anthropogenic gradients for e.g., in temperature and nutrient availability. Moreover, such external forcing may not only affect the flux of organic matter but could trigger large and abrupt changes, i.e., trophic cascades and ecological regime shifts, which once having occurred may prove potentially irreversible. In this study, we investigate the state and regulatory pathways of the Kattegat; a eutrophied and heavily exploited marine ecosystem, specifically testing for the occurrence of regime shifts and the relative importance of multiple drivers, e.g., climate change, eutrophication and commercial fishing on ecosystem dynamics and trophic pathways. Using multivariate statistics and nonlinear regression on a comprehensive data set, covering abiotic factors and biotic variables across all trophic levels, we here propose a potential regime shift from pelagic to benthic regulatory pathways; a possible first sign of recovery from eutrophication likely triggered by drastic nutrient reductions (involving both nitrogen and phosphorus), in combination with climate‐driven changes in local environmental conditions (e.g., temperature and oxygen concentrations).  相似文献   

13.
Past abrupt ‘regime shifts’ have been observed in a range of ecosystems due to various forcing factors. Large‐scale abrupt shifts are projected for some terrestrial ecosystems under climate change, particularly in tropical and high‐latitude regions. However, there is very little high‐resolution modelling of smaller‐scale future projected abrupt shifts in ecosystems, and relatively less focus on the potential for abrupt shifts in temperate terrestrial ecosystems. Here, we show that numerous climate‐driven abrupt shifts in vegetation carbon are projected in a high‐resolution model of Great Britain's land surface driven by two different climate change scenarios. In each scenario, the effects of climate and CO2 combined are isolated from the effects of climate change alone. We use a new algorithm to detect and classify abrupt shifts in model time series, assessing the sign and strength of the non‐linear responses. The abrupt ecosystem changes projected are non‐linear responses to climate change, not simply driven by abrupt shifts in climate. Depending on the scenario, 374–1,144 grid cells of 1.5 km × 1.5 km each, comprising 0.5%–1.5% of Great Britain's land area show abrupt shifts in vegetation carbon. We find that abrupt ecosystem shifts associated with increases (rather than decreases) in vegetation carbon, show the greatest potential for early warning signals (rising autocorrelation and variance beforehand). In one scenario, 89% of abrupt increases in vegetation carbon show increasing autocorrelation and variance beforehand. Across the scenarios, 81% of abrupt increases in vegetation carbon have increasing autocorrelation and 74% increasing variance beforehand, whereas for decreases in vegetation carbon these figures are 56% and 47% respectively. Our results should not be taken as specific spatial or temporal predictions of abrupt ecosystem change. However, they serve to illustrate that numerous abrupt shifts in temperate terrestrial ecosystems could occur in a changing climate, with some early warning signals detectable beforehand.  相似文献   

14.
Footprints of climate change in the Arctic marine ecosystem   总被引:3,自引:0,他引:3  
In this article, we review evidence of how climate change has already resulted in clearly discernable changes in marine Arctic ecosystems. After defining the term ‘footprint’ and evaluating the availability of reliable baseline information we review the published literature to synthesize the footprints of climate change impacts in marine Arctic ecosystems reported as of mid‐2009. We found a total of 51 reports of documented changes in Arctic marine biota in response to climate change. Among the responses evaluated were range shifts and changes in abundance, growth/condition, behaviour/phenology and community/regime shifts. Most reports concerned marine mammals, particularly polar bears, and fish. The number of well‐documented changes in planktonic and benthic systems was surprisingly low. Evident losses of endemic species in the Arctic Ocean, and in ice algae production and associated community remained difficult to evaluate due to the lack of quantitative reports of its abundance and distribution. Very few footprints of climate change were reported in the literature from regions such as the wide Siberian shelf and the central Arctic Ocean due to the limited research effort made in these ecosystems. Despite the alarming nature of warming and its strong potential effects in the Arctic Ocean the research effort evaluating the impacts of climate change in this region is rather limited.  相似文献   

15.
Large-scale alterations in marine ecosystems as a response to environmental and anthropogenic pressures have been documented worldwide. Yet, these are primarily investigated by assessing abundance fluctuations of a few dominant species, which inadequately reflect ecosystem-wide changes. In addition, it is increasingly recognized that it is not species identity per se, but their traits that determine environmental responses, biological interactions and ecosystem functioning. In this study, we investigated long-term, spatio-temporal variability in trait composition across multiple organism groups to assess whether functional changes occur in a similar way across trophic levels and whether shifts in trait composition link to environmental change. We combined extensive trait datasets with long-term surveys (30–40 yr) of four organism groups (phytoplankton, zooplankton, benthic invertebrates and fish) in three environmentally distinct areas of a large marine ecosystem. We found similar temporal trajectories in the community weighted mean trait time-series of the different trophic groups, revealing ecosystem-wide functional changes. The traits involved and their dynamics differed between areas, concurrent with climate-driven changes in temperature and salinity, as well as more local dynamics in nutrients and oxygen. This finding highlights the importance of considering both global climate, as well as local external drivers when studying ecosystem changes. Using a multi-trophic trait-based approach, our study demonstrates the importance of integrating community functional dynamics across multiple trophic levels to capture ecosystem-wide responses which could, ultimately, help moving towards a holistic understanding, assessment and management of marine ecosystems.  相似文献   

16.
Seaweeds are ecologically important primary producers, competitors, and ecosystem engineers that play a central role in coastal habitats ranging from kelp forests to coral reefs. Although seaweeds are known to be vulnerable to physical and chemical changes in the marine environment, the impacts of ongoing and future anthropogenic climate change in seaweed‐dominated ecosystems remain poorly understood. In this review, we describe the ways in which changes in the environment directly affect seaweeds in terms of their physiology, growth, reproduction, and survival. We consider the extent to which seaweed species may be able to respond to these changes via adaptation or migration. We also examine the extensive reshuffling of communities that is occurring as the ecological balance between competing species changes, and as top‐down control by herbivores becomes stronger or weaker. Finally, we delve into some of the ecosystem‐level responses to these changes, including changes in primary productivity, diversity, and resilience. Although there are several key areas in which ecological insight is lacking, we suggest that reasonable climate‐related hypotheses can be developed and tested based on current information. By strategically prioritizing research in the areas of complex environmental variation, multiple stressor effects, evolutionary adaptation, and population, community, and ecosystem‐level responses, we can rapidly build upon our current understanding of seaweed biology and climate change ecology to more effectively conserve and manage coastal ecosystems.  相似文献   

17.
Synergistic Effects of Climate and Fishing in a Marine Ecosystem   总被引:1,自引:0,他引:1  
Current climate change and overfishing are affecting the productivity and structure of marine ecosystems. This situation is unprecedented for the marine biosphere and it is essential to understand the mechanisms and pathways by which ecosystems respond. We report that climate change and overfishing are likely to be responsible for a rapid restructuring of a highly productive marine ecosystem with effects throughout the pelagos and the benthos. In the mid-1980s, climate change, consequent modifications in the North Sea plankton, and fishing, all reduced North Sea cod recruitment. In this region, production of many benthic species respond positively and immediately to temperature. Analysis of a long-term, spatially extensive biological (plankton and cod) and physical (sea surface temperature) dataset suggests that synchronous changes in cod numbers and sea temperature have established an extensive trophic cascade favoring lower trophic level groups over economic fisheries. A proliferation of jellyfish that we detect may signal the climax of these changes. This modified North Sea ecology may provide a clear indication of the synergistic consequences of coincident climate change and overfishing. The extent of the ecosystem restructuring that has occurred in the North Sea suggests we are unlikely to reverse current climate and human-induced effects through ecosystem resource management in the short term. Rather, we should understand and adapt to new ecological regimes. This implies that fisheries management policies will have to be fully integrated with the ecological consequences of climate change to prevent a similar collapse in an exploited marine ecosystem elsewhere. Author Contributions  RRK conceived the project and GB analysed the data. RRK, GB and JAL co-wrote the paper.  相似文献   

18.
Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014–2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no-take state marine reserves, and 76 partial-take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no-take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat-wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem-wide consequences resulting from acute climate-driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.  相似文献   

19.
Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long‐lived, wide‐ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black‐legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea‐surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large‐scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom‐up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large‐scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself.  相似文献   

20.
Dryland ecosystems may be especially vulnerable to expected 21st century increases in temperature and aridity because they are tightly controlled by moisture availability. However, climate impact assessments in drylands are difficult because ecological dynamics are dictated by drought conditions that are difficult to define and complex to estimate from climate conditions alone. In addition, precipitation projections vary substantially among climate models, enhancing variation in overall trajectories for aridity. Here, we constrain this uncertainty by utilizing an ecosystem water balance model to quantify drought conditions with recognized ecological importance, and by identifying changes in ecological drought conditions that are robust among climate models, defined here as when >90% of models agree in the direction of change. Despite limited evidence for robust changes in precipitation, changes in ecological drought are robust over large portions of drylands in the United States and Canada. Our results suggest strong regional differences in long‐term drought trajectories, epitomized by chronic drought increases in southern areas, notably the Upper Gila Mountains and South‐Central Semi‐arid Prairies, and decreases in the north, particularly portions of the Temperate and West‐Central Semi‐arid Prairies. However, we also found that exposure to hot‐dry stress is increasing faster than mean annual temperature over most of these drylands, and those increases are greatest in northern areas. Robust shifts in seasonal drought are most apparent during the cool season; when soil water availability is projected to increase in northern regions and decrease in southern regions. The implications of these robust drought trajectories for ecosystems will vary geographically, and these results provide useful insights about the impact of climate change on these dryland ecosystems. More broadly, this approach of identifying robust changes in ecological drought may be useful for other assessments of climate impacts in drylands and provide a more rigorous foundation for making long‐term strategic resource management decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号