首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of forest disturbance on survival and secondary dispersal of an artificial seed shadow (N= 800) was studied at Brownsberg Natural Park, Suriname, South America. We scattered single seeds of the frugivore‐dispersed tree Virola kwatae (Myristicaceae), simulating loose dispersal by frugivores, in undisturbed and disturbed secondary forest habitats. Seed survival rate aboveground was high (69%) within 2 wk and was negatively correlated with scatterhoarding rate by rodents, the latter being significantly lower in the undisturbed forest (9%) than in the disturbed forest (20%). Postdispersal seed predation by vertebrates was low (3%) and infestation of seeds by invertebrates was almost zero in all instances. Therefore, secondary seed dispersal by rodents in forest is not as critical for recruitment as observed among other bruchid‐infested large‐seeded species. Secondary seed dispersal by rodents may, however, facilitate seedling recruitment whether cached seeds experience greater survival than seeds remaining above ground surface.  相似文献   

2.
南方红豆杉(Taxus chinensis)在我国南方地区多分布在村落附近的斑块生境中,成熟后的种子直接落在母树下或被鸟类等动物搬运至其他斑块中。林下地面种子会被地面活动的动物搬运,继而影响种子命运及种群更新。于2016年、2017年南方红豆杉果期,在浙江天目山一个红豆杉种群分布地(临安市桐坑村),采用野外种子摆放实验的方法研究了动物对地面种子的搬运情况。结果表明:啮齿类动物取食是南方红豆杉地面种子消失的主要原因,但种子消失率在斑块间及边缘生境中的差异较大。母树林和竹林是啮齿类动物的主要觅食生境,两种生境的动物取食率明显高于山核桃种植园。边缘生境成为啮齿类斑块间移动的通道,而非觅食场所。4种啮齿类动物中,淡腹松鼠(Callosciurus pygerythrus)在母树林斑块以外的生境中出现频率最高,而其他地面搬运者回避利用山核桃种植园,仅在母树林和竹林斑块中搬运南方红豆杉地面种子。可见,斑块生境中动物改变了南方红豆杉地面种子的空间沉积格局,进而影响植物种群的更新。  相似文献   

3.
浙江天童山鼠类对栲树种子的捕食和扩散   总被引:1,自引:1,他引:0  
在浙江天童山国家森林公园,研究了鼠类在常绿阔叶林、马尾松林和灌丛几种生境内对栲树(Castanopsis fargesii)种子的捕食和扩散的影响.结果表明,社鼠(Niviventer confucianus)和针毛鼠(N.fulvescens)是栲树种子的主要捕食者.种子在刚布下后的几天内消失的最快,随后其日消失率便逐渐降低,在不同生境中,其日消失率也有所不同,在灌丛中日消失率最高(7.54%),其次是马尾松林(7.29%),而常绿阔叶林中3条样带的日消失率较低.在损失的种子中,各种种子命运所占比例在样带中存在着差异,灌丛中失踪的种子比例最高,占97.77%,而样带2的则最低,只占8.91%.这与不同样带中的植被组成密切相关.同时,鼠类对栲树种子扩散的距离比较近,观察到的最远扩散距离为12.7 m.  相似文献   

4.
The process of fragmentation can greatly influence plant–animal interactions. To assess the degree to which it affects the balance between two interactions of opposite sign, namely seed dispersal and post-dispersal seed predation, we selected 16 patches of chestnut forest in O Courel and El Bierzo, northwestern Spain. We assessed the effect of fragmentation over two different seed dispersal–predation systems using Helleborus foetidus and Ilex aquifolium as model species. In the first case, field experiments consisted of seed-offering trays with selective exclusion of rodents and ants in a two-way orthogonal design. In the second experiment, we placed experimental branches and trays on the floor to assess seed dispersal and predation. The interactions between several fragment traits and the relative contribution of rodents, ants and birds to seed removal were analyzed by means of generalized linear mixed models. Results show that for H. foetidus, differences in seed dispersal–predation were accounted for by patch shape, which affected mainly the dispersal phase. Major seed dispersal took place in patches with a smaller edge to core ratio and high plant cover (abandoned patches), whilst the latter also showed maximum seed predation. For I. aquifolium, fragmentation effects were significant only for seed predation, which was increased in abandoned patches. This shows that the effects of habitat fragmentation can emerge at different phases depending on specific traits of the interacting animals. It also highlights the importance of traditional land-use practices in species interactions.  相似文献   

5.
Forest rodents play an essential role as seed dispersal vectors through their caching behaviors. Using seeds of Quercus aliena, Q. glandulifera, and Cyclobalanopsis engleriana (Fagaceae), which are dominant, but poorly studied species, in the Qinling Mountains, Central China, we investigated seed predation and dispersal by forest rodents in 2010 and 2011. There were significant differences in rodent seed-eating and caching strategies among the three tree species. Seeds of Q. aliena and C. engleriana had hard coats, high nutrition contents (e.g., protein, fat, and starch), and long germination schedules (C. engleriana only). They were less frequently eaten in situ, but more likely to be eaten after removal or cached. Seeds of Q. glandulifera had soft coats and low nutrition contents and were more often eaten in situ and less likely to be eaten after removal or cached. Our findings indicated that forest rodents were primarily responsible for seed predation and dispersal of these three tree species in the Qinling Mountains, and seed traits, especially coat hardness, nutrition content, and germination schedule, were important factors influencing rodent eating and caching behaviors. In addition, seed dispersal process of each tree species differed significantly between the 2 years, reflecting the effect of mast seeding on the eating and caching strategies of forest rodents.  相似文献   

6.
Natural seed deposition patterns and their effects on post-dispersal seed fate are critical to tropical tree recruitment. The major dispersal agents of the large-seeded tree Canarium euphyllum in Khao Yai National Park, Thailand, are large frugivorous birds such as hornbills, which generated spatially heterogeneous seed deposition patterns because they regurgitated seeds at perching trees and conspecific and heterospecific feeding trees. We investigated the fate of seeds dispersed in this manner using seed removal experiments and automatic camera trapping. Seeds placed experimentally around conspecific feeding trees had higher removal rates than seeds placed elsewhere. These effects were likely mediated by two seed-eating rodents, the Indochinese ground squirrel (Menetes berdmorei) and the giant long-tailed rat (Leopoldamys sabanus). Consequently, the spatial patterns generated by hornbills had consequences for post-dispersal seed fates, particularly whether or not the seeds were removed by rodents. Primary dispersal by hornbills does alter seed fate by altering the probability of rodent–seed interaction, but the ultimate impact of dispersal by hornbills will depend on how important rodent scatterhoarding is to seed germination and seedlings. Given that major seed dispersers of C. euphyllum are now absent or rare in degraded forests in tropical Asia, it is becoming increasingly important to understand the roles of scatterhoarding rodents in these altered habitats in this region.  相似文献   

7.
The post‐dispersal removal or predation of seeds of native tree species was investigated in Queensland, Australia, at degraded habitats and rainforest restoration sites where direct seeding might be used to facilitate tree regeneration (old fields or open habitats, lantana thicket, rainforest edge, and 5‐ and 10‐year‐old restoration plantings). Seed removal/predation was assessed in relation to tree seed weight and canopy density of the habitats during the wet season period. Results indicated that seed removal/predation imposes limitations on seed availability, particularly for small seeded species. In most situations, larger seeds were less removed/predated, most likely due to the more limited range of large seed consumers. The use of large, hard‐coated seeds may potentially reduce seed loss in open situations (from both seed removal and desiccation), unless large seed consumers frequent the site. Canopy cover exerted an influence on seed removal/predation, though trends varied in relation to site and the time of season. Broadcast sowing of seed under planted tree canopies at the more advanced stages of closure may in some areas result in higher seed removal/predation. Likewise, seeding in areas dominated by woody weeds may result in high seed losses to consumers such as rodents. Results suggested that undertaking direct seeding to coincide with the maximal period of fruit production may in some situations be beneficial to minimize seed loss. Overall, site context, canopy cover, and species selection appear to be important considerations when aiming to reduce loss of seeds to animal seed consumers in restoration work.  相似文献   

8.
 以分布在云南西双版纳地区的大型先锋草本植物小果野芭蕉(Musa acuminata)为研究材料,研究其种子初次散布过程和不同时空尺度上种子被 捕食格局。小果野芭蕉的成熟果实有75%在夜间被取食和传播,在白天消失的果实则占25%。蝙蝠是其最主要的种子传播者,鸟类在其种子传播 过程中也起到一定的作用。人工摆放种子试验结果显示小果野芭蕉种子的主要转移者是小型啮齿类(鼠类)和蚁类:在开放处理下3 d后转移率为 86%,排除蚁类(鼠类可进入)处理下种子转移率为69%以及排除鼠类(蚂蚁可进入)处理下种子被转移率为56%。季节、地点和生境均显著影响人工 摆放种子被转移强度:雨季显著高于旱季(p<0.001), 野芭蕉生境显著高于与其相连的自然森林和荒地(p<0.001),在人为干扰较少的补蚌自然 保护区显著低于西双版纳热带植物园和新山,而后两者之间并无显著差异(p>0.05)。同时,地点和生境以及季节、地点和生境都有显著的交互 作用。与相邻的森林和荒地相比,野芭蕉群落中种子被鼠类捕食的强度最大且受蚁类二次转移的比例最少,森林和荒地中种子被鼠类捕食的强 度相对较小且蚁类对种子的二次转移比例较高,从而更好地帮助种子逃避鼠类捕食。因此,依赖于食果动物(主要是蝙蝠, 也包括鸟类)的初次 散布是小果野芭蕉种子逃避捕食的关键。  相似文献   

9.
The objective of this study was to examine how the processes of seed dispersal and seed predation were altered in forest fragments of the dry forest of Madagascar, where the usual seed dispersers and vertebrate seed predators were absent, using a lemur-dispersed tree species (Strychnos madagascariensis; Loganiaceae) as an example. We then assessed how the changes in vertebrate community composition alter the regeneration pattern and establishment of this tree species and thus, ultimately, the species composition of the forest fragments. By using size-selective exclosures, data from forest fragments were compared with results from continuous forest where vertebrate dispersers and predators were abundant. Visits to the exclosures by mammalian seed predators were monitored with hair traps. In the continuous forest up to 100% of the seeds were removed within the 7 days of the experiments. A substantial proportion of them was lost to seed predation by native rodents. In contrast, practically no predation took place in the forest fragments and almost all seeds removed were dispersed into the safety of ant nests by Aphaenogaster swammerdami, which improves chances of seedling establishment. In congruence with these findings, the abundance of S. madagascariensis in the forest fragments exceeded that of the continuous forest. Thus, the lack of vertebrate seed dispersers in these forest fragments did not lead to a decline in regeneration of this animal-dispersed tree species as would have been expected, but rather was counterbalanced by the concomitant demise of vertebrate seed predators and an increased activity of ants taking over the role of seed dispersers, and possibly even out-doing the original candidates. This study provides an example of a native vertebrate-dispersed species apparently profiting from fragmentation due to flexible animal-plant interactions in different facets, possibly resulting in an impoverished tree species community.  相似文献   

10.
Recognition that tree recruitment depends on the balance between seed arrival and seedling survival has led to a surge of interest in seed‐dispersal limitation and seedling‐establishment limitation in primary forests. Virtually unaddressed are comparisons of this balance in mature and early successional habitats. We assessed seed rain and seedling recruitment dynamics of tree species in primary forest, secondary forest and pasture released from grazing in a tropical agricultural landscape. Seed to seedling ratios (seed effectiveness; Φi) for 43 species in southern Mexico determined differences in the extent to which seeds produced seedlings by habitat, life history, and dispersal mode. Reproductive potential as estimated by the transition from seed rain to seedling recruitment, differed by habitats, and varied dramatically by life history and dispersal mode. Expected recruit densities (Eit) were higher for animal‐dispersed than wind‐dispersed species, and for non‐pioneer than pioneer species. Non‐pioneers and animal‐dispersed species had higher expected relative recruit abundance (εit) in primary forest (median of 4 seeds recruit?1) whereas in secondary forest wind‐dispersed pioneers had the highest expected relative recruit abundance (median of 16 seeds per recruit). In pastures, wind‐dispersed pioneer species were most successful with many more seeds per recruit (median of 291) than both forest habitats. Seeds per recruit (Φi) appeared to decrease with increase in seed mass for 43 species for which data were available (r = –0.55, P < 0.001). This was associated with a negative correlation of Φi with seed size in primary forest (r = –0.50, P = 0.08 for 13 species); Φi was not correlated with seed size in secondary forest (n = 16) or pasture (n = 14). Metrics of seeds per recruit, expected recruit density and expected relative recruit abundance dramatically illustrate differences in barriers to recruitment in successional habitats.  相似文献   

11.
Rebecca J. Cole 《Biotropica》2009,41(3):319-327
Variation in postdispersal seed fate is an important factor driving patterns of forest regeneration. Because most previous studies have not tracked final seed fate and have commonly equated seed removal with predation without considering the possibility of secondary dispersal, little is known about individual seed mortality factors in successional and degraded habitats. This study tracked the postdispersal fate of large-seeded tropical montane trees in abandoned pasture, young secondary forests, and small forest fragments during two consecutive years in an agricultural landscape in southern Costa Rica. The incidence of secondary dispersal by animals, scatterhoarding in particular, and the effects of seed burial on germination were measured. Overall, seeds survived through germination more often in secondary forests with high levels of mortality occurring in abandoned pastures and forest fragments. The majority of seed mortality was caused by rodent predation in forest fragments, insects and fungal pathogens in secondary forests, and a combination of desiccation, insects, and fungal pathogens in pastures. Seeds were frequently secondarily dispersed in larger forest fragments, whereas they were only rarely moved in pastures and secondary forests. Burial tended to improve germination in pastures and was important for an often scatterhoarded species, Otoba novogranatensis, in all habitats. The results of this study suggest that: (1) seed mortality factors differ in response to the type of habitat degradation; (2) large-seeded species have high potential for survival when dispersed to young secondary forests; and (3) seed removal is not a reliable proxy for seed predation, particularly in less degraded forest fragments.  相似文献   

12.
Post‐dispersal predation can be a major source of seed loss in temperate forests. Little is known, however, about how predator‐mediated indirect interactions such as apparent competition alter survival patterns of canopy tree seeds. Understorey plants may enhance tree seed predation by providing sheltered habitat to granivores (non‐trophic pathway). In addition, occurrence of different tree seeds in mixed patches may lead to short‐term apparent competition between seed types, because of the granivores’ foraging response to changes in food patch quality (trophic pathway). We hypothesised that understorey bamboo cover and mixing of seed species in food patches would both increase tree seed predation in a Nothofagus dombeyi?Austrocedrus chilensis forest in northern Patagonia, Argentina. Seed removal experiments were conducted for three consecutive years (2000–2002) differing in overall granivory rates. Seed patch encounter and seed removal rates were consistently higher for the larger and more nutritious Austrocedrus seeds than for the smaller Nothofagus seeds. Seed removal was greater beneath bamboo than in open areas. This apparent competition pathway was stronger in a low‐predation year (2000) than in high‐predation years (2001–2002), suggesting a shift in microhabitat use by rodents. Patch composition had a significant, though weaker, impact on seed survival across study years, whereas seed density per patch enhanced encounter rates but did not influence seed removal. Removal of the less‐preferred Nothofagus seeds increased in the presence of Austrocedrus seeds, but the reciprocal indirect effect was not observed. However, this non‐reciprocal apparent competition between seed species was only significant in the high‐predation years. Our study shows that granivore‐mediated indirect effects can arise through different interaction pathways, affecting seed survival patterns according to the predator's preference for alternative seed types. Moreover, results indicate that the occurrence and relative strength of trophic vs non‐trophic pathways of apparent competition may change under contrasting predation scenarios.  相似文献   

13.
Almost all dry Afromontane forests of Northern Ethiopia have been converted to agricultural, grazing or scrub lands except for small fragments left around churches (‘Church forests’). Species regeneration in these forests is limited. We investigated (i) how intense postdispersal seed predation was in church forest, and if this seed predation varied with species and/or habitat, and (ii) for how long tree seeds maintained their viability while buried in forest soil. In the seed predation experiment, we monitored seeds of six tree species in four habitats for a period of 14 weeks (the peak seeding season). In the seed viability experiment, we assessed seed viability of five species in four habitats after being buried 6, 12, or 18 months. Ninety‐two percent of the tree seeds were predated within 3.5 months. Predation was mainly dependent on species whereas habitat had a weaker effect. Seed viability decreased sharply with burial time in soil for all species except for Juniperus. To minimize seed availability limitation for regeneration of such species in the forest, the standing vegetation needs to be persistently managed and conserved for a continuous seed rain supply. Additional seed sowing, and seed and seedling protection (by e.g. animal exclosures) may increase successful regeneration of important species in these forests.  相似文献   

14.
Dispersal patterns can be affected by seed familiarity and seed traits, including size, mass, and nutritional value, but these factors have not been intensively studied in the context of seed dispersal processes. Our aim was to study how small rodents respond to seed size and seed familiarity in their pattern of Manchurian walnut (Juglans mandshurica) seeds in two different habitats in temperate forests of northeast China. Our results demonstrated that Apodemus penisulae acts as the most important disperser for Manchurian walnut seeds. Inexperienced small rodents did not reject seeds of the Manchurian walnut and show similar seed removal rates as compared with experienced rodents. Both experienced and naïve rodents actively participated in seed scatterhoarding of Manchurian walnut seeds. Consecutive survey showed that seeds with large size/mass were removed faster than those with small size/mass, indicating a preference for large seeds. However, small seeds scatter-hoarded by small rodents were transported farther than large ones, failing to support the traditional optimization models for various tree species. Small seeds of Manchurian walnut in caches were less likely to be recovered than large ones and showed greater cache survival rates, indicating that small seeds would be more advantageous for regeneration than large seeds in small rodent-dominated forests.  相似文献   

15.
Network structure in plant-animal systems has been widely investigated but the roles of functional traits of plants and animals in formation of mutualism and predation interactions and community structure are still not fully understood. In this study, we quantitatively assessed interaction strength of mutualism and predation between 5 tree species and 7 rodent species by using semi-natural enclosures in a subtropical forest in southwest China. Seeds with high handling-time and nutrition traits (for both rat and mouse species) or high tannin trait (for mouse species) show high mutualism but low predation with rodents; while seeds with low handling-time and low nutrition traits show high predation but low mutualism with rodents. Large-sized rat species are more linked to seeds with high handling-time and high nutrition traits, while small-sized mouse species are more connected with seeds with low handling-time, low nutrition value and high tannin traits. Anti-predation seed traits tend to increase chance of mutualism instead of reducing predation by rodents, suggesting formation of mutualism may be connected with that of predation. Our study demonstrates that seed and animal traits play significant roles in the formation of mutualism and predation and network structure of the seed-rodent dispersal system.  相似文献   

16.
Rodents affect the post-dispersal fate of seeds by acting either as on-site seed predators or as secondary dispersers when they scatter-hoard seeds. The tropical forests of north-east India harbour a high diversity of little-studied terrestrial murid and hystricid rodents. We examined the role played by these rodents in determining the seed fates of tropical evergreen tree species in a forest site in north-east India. We selected ten tree species (3 mammal-dispersed and 7 bird-dispersed) that varied in seed size and followed the fates of 10,777 tagged seeds. We used camera traps to determine the identity of rodent visitors, visitation rates and their seed-handling behavior. Seeds of all tree species were handled by at least one rodent taxon. Overall rates of seed removal (44.5%) were much higher than direct on-site seed predation (9.9%), but seed-handling behavior differed between the terrestrial rodent groups: two species of murid rodents removed and cached seeds, and two species of porcupines were on-site seed predators. In addition, a true cricket, Brachytrupes sp., cached seeds of three species underground. We found 309 caches formed by the rodents and the cricket; most were single-seeded (79%) and seeds were moved up to 19 m. Over 40% of seeds were re-cached from primary cache locations, while about 12% germinated in the primary caches. Seed removal rates varied widely amongst tree species, from 3% in Beilschmiedia assamica to 97% in Actinodaphne obovata. Seed predation was observed in nine species. Chisocheton cumingianus (57%) and Prunus ceylanica (25%) had moderate levels of seed predation while the remaining species had less than 10% seed predation. We hypothesized that seed traits that provide information on resource quantity would influence rodent choice of a seed, while traits that determine resource accessibility would influence whether seeds are removed or eaten. Removal rates significantly decreased (p < 0.001) while predation rates increased (p = 0.06) with seed size. Removal rates were significantly lower for soft seeds (p = 0.002), whereas predation rates were significantly higher on soft seeds (p = 0.01). Our results show that murid rodents play a very important role in affecting the seed fates of tropical trees in the Eastern Himalayas. We also found that the different rodent groups differed in their seed handling behavior and responses to changes in seed characteristics.  相似文献   

17.
动物对花楸树种实的取食与传播   总被引:4,自引:1,他引:3  
花楸树是我国东北林区重要的非木质资源树种,其种实既有自然散布方式,也有动物散布方式.本文通过对花楸树种实散布过程中动物活动特点的研究,探索动物取食和传播花楸树种实的规律及其对花楸树天然更新的影响.在2008和2009年花楸树果实成熟期,通过定期观察取食花楸树果实的鸟类及其取食方式,确定对花楸树果实有拜访行为的鸟类有8种,其中食果肉鸟类斑鸫、灰喜鹊和白背啄木鸟对花楸树种实有传播作用,它们对花楸树果实的拜访频率分别为54%、12%和7%,取食后第一落点集中于距离母树5~10 m之间(占68.2%),其次为距离母树5 m以内(占27.3%),距离母树10 m以外的比例很小(占4.5%).果实在鸟类消化道内的滞留时间可达20 min,表明潜在传播距离会很长.人工摆放果实和种子试验表明,在不同生境地面摆放的果实6~7 d内全部消失,果实的取食者主要是啮齿类和地面取食的鸟类,取食率均较高(50%~70%);种子的取食者为啮齿类、地面取食的鸟类和蚁类,取食率均较低(1%~5%).花楸树为多种动物提供食物,而动物为花楸树传播种子,动物的取食对花楸树的天然更新有重要影响.  相似文献   

18.
In beech-dominated forests in Central Europe, many spring geophytes show adaptations to seed dispersal by ants (myrmecochory). Ants, however, can be rare in such moist forests. Motivated by observations of slug feeding on seeds we investigated the seed consumption of two plant species, Anemone nemorosa and Asarum europaeum, by slugs, in a series of experiments. In a seed predation experiment in a beech forest, we found that seed removal was strongly reduced when gastropods were excluded from the seed depots. The contribution of insects, including ants, and rodents to seed removal was relatively less but differed between May and July. In the laboratory, slug species, in particular Arion sp., consumed seeds of both plant species. Slugs either consumed the elaiosomes of seeds or swallowed seeds intact. Swallowed seeds were defecated undamaged and germinated as well as control seeds when buried overwinter, indicating the potential for seed dispersal by slugs. We also recovered seeds of myrmecochores in the faeces of several slugs caught in forests. In a slug release experiment in the forest, slugs moved up to 14.6 m (mean 4.4 m) in 15 h, which is the median gut passage time of seeds based on measurements made in the laboratory. We also found that when slug-defecated seeds were offered to rodents, these were less attractive than control seeds, suggesting that passage through the slug gut reduces seed predation risk. Our results demonstrate that slugs are significant consumers of elaiosomes or entire seeds of ant-dispersed plants and that they can function as seed dispersers of these plants.  相似文献   

19.
Frugivorous fish play a prominent role in seed dispersal and reproductive dynamics of plant communities in riparian and floodplain habitats of tropical regions worldwide. In Neotropical wetlands, many plant species have fleshy fruits and synchronize their fruiting with the flood season, when fruit‐eating fish forage in forest and savannahs for periods of up to 7 months. We conducted a comprehensive analysis to examine the evolutionary origin of fish–fruit interactions, describe fruit traits associated with seed dispersal and seed predation, and assess the influence of fish size on the effectiveness of seed dispersal by fish (ichthyochory). To date, 62 studies have documented 566 species of fruits and seeds from 82 plant families in the diets of 69 Neotropical fish species. Fish interactions with flowering plants are likely to be as old as 70 million years in the Neotropics, pre‐dating most modern bird–fruit and mammal–fruit interactions, and contributing to long‐distance seed dispersal and possibly the radiation of early angiosperms. Ichthyochory occurs across the angiosperm phylogeny, and is more frequent among advanced eudicots. Numerous fish species are capable of dispersing small seeds, but only a limited number of species can disperse large seeds. The size of dispersed seeds and the probability of seed dispersal both increase with fish size. Large‐bodied species are the most effective seed dispersal agents and remain the primary target of fishing activities in the Neotropics. Thus, conservation efforts should focus on these species to ensure continuity of plant recruitment dynamics and maintenance of plant diversity in riparian and floodplain ecosystems.  相似文献   

20.
Seed dispersal is an important factor influencing the genetic structure of forest tree populations. Knowledge about the seed shadow is important to assess the ability of tree species to colonize new and disturbed habitats or to respond to environmental change by migrating to more suitable habitats. In a seed trap experiment, we investigated local seed dispersal distances of silver fir seeds (Abies alba Mill.) by explicitly identifying mother trees. For this purpose, we matched microsatellite genotypes of maternal tissues of seeds with the genotypes of adult trees in the studied stand. Furthermore, we analysed the effect of morphological traits on dispersal distance, and we assessed the number of contributing mother trees and compared the seed density of the closed forest-stand with the adjacent blowdown. Based on 674 seeds collected in a grid of 37 seed traps, a significant decline in seed density was observed from within the forest to the forest blowdown area >40 m from the forest edge. A median dispersal distance of 31 m was determined for filled seeds based on direct assignment of seeds to their mother trees. This was higher than that determined in the previous studies using different methods. Dispersal distance was negatively correlated to seed-weight, but this was partially compensated for by the length of seed wings. A very large number of unassigned maternal genotypes (435) suggested that dispersal distance might have been underestimated. Lessons for future studies were: to perform a full genotypic inventory of adult trees in a defined perimeter, to increase the number of microsatellite markers and to study several sites over a period of several years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号