共查询到9条相似文献,搜索用时 15 毫秒
1.
Flooding and soil composition determine beta diversity of lowland forests in Northern South America 下载免费PDF全文
Beta diversity may be determined by dispersal limitation, environment, and phylogeographic history. Our objective was to advance the understanding of plant species turnover in rain forests in northern South America and determine which factors are affecting species beta diversity. We evaluated the relative effect of environmental variables (i.e., soil, climate, fragmentation, and flooding frequency) and dispersal limitation (i.e., geographical distance and resistance distance due mountain barriers) on tree beta diversity in 32 1‐ha lowland forest plots. We found that tree species turnover was better explained by environmental distance than by geographical distance. Although soil conditions and flooding regime were good predictors of tree species composition, almost half of the variance remained unexplained. In our study system, the eastern Andean ridge had no significant effect on plant beta diversity, probably because of its young age in relation to the phylogeny. Our results provide support for the importance of environmental factors and suggest a more restricted role of dispersal limitation. Therefore, we advise that conservation strategies of lowland trees should consider specific forest types (e.g., seasonally flooded vs. terra firme, as well as piedmont vs. central Amazonian forests). 相似文献
2.
Phylogeography of var gene repertoires reveals fine‐scale geospatial clustering of Plasmodium falciparum populations in a highly endemic area 下载免费PDF全文
Sofonias K. Tessema Stephanie L. Monk Mark B. Schultz Livingstone Tavul John C. Reeder Peter M. Siba Ivo Mueller Alyssa E. Barry 《Molecular ecology》2015,24(2):484-497
Plasmodium falciparum malaria is a major global health problem that is being targeted for progressive elimination. Knowledge of local disease transmission patterns in endemic countries is critical to these elimination efforts. To investigate fine‐scale patterns of malaria transmission, we have compared repertoires of rapidly evolving var genes in a highly endemic area. A total of 3680 high‐quality DBLα‐sequences were obtained from 68 P. falciparum isolates from ten villages spread over two distinct catchment areas on the north coast of Papua New Guinea (PNG). Modelling of the extent of var gene diversity in the two parasite populations predicts more than twice as many var gene alleles circulating within each catchment (Mugil = 906; Wosera = 1094) than previously recognized in PNG (Amele = 369). In addition, there were limited levels of var gene sharing between populations, consistent with local parasite population structure. Phylogeographic analyses demonstrate that while neutrally evolving microsatellite markers identified population structure only at the catchment level, var gene repertoires reveal further fine‐scale geospatial clustering of parasite isolates. The clustering of parasite isolates by village in Mugil, but not in Wosera was consistent with the physical and cultural isolation of the human populations in the two catchments. The study highlights the microheterogeneity of P. falciparum transmission in highly endemic areas and demonstrates the potential of var genes as markers of local patterns of parasite population structure. 相似文献
3.
In closed‐canopy tropical forest understory, light availability is a significant determinant of habitat diversity because canopy structure is highly variable in most tropical forests. Consequently, variation in canopy cover affects the composition and distribution of plant species via creating variable light environments. Nevertheless, little is known about how variation in canopy openness structures patterns of plant–animal interactions. Because of the great diversity and dominance of ants in tropical environments, we used ant–plant interactions as a focal network to evaluate how variation in canopy cover influences patterns of plant–insect interactions in the Brazilian Amazon rain forest. We observed that small increases in canopy openness are associated with increased diversity of ant–plant interactions in our study area, and this change is independent of plant or ant species richness. Additionally, we found smaller niche overlap for both ants and plants associated with greater canopy openness. We hypothesize that enhanced light availability increases the breadth of ant foraging sources because variation in light availability gives rise to plant resources of different quality and amounts. Moreover, greater light availability promotes vegetative growth in plants, creating ant foraging ‘bridges’ between plants. In sum, our results highlight the importance of environmental heterogeneity as a determinant of ant–plant interaction diversity in tropical environments. 相似文献
4.
André T.C. Dias Reinaldo L. Bozelli Ricardo M. Darigo Francisco de A. Esteves Heraldo F. dos Santos Marcos P. Figueiredo‐Barros Maria Fernanda Q. S. Nunes Fabio Roland Luiz R. Zamith Fabio R. Scarano 《Restoration Ecology》2012,20(4):483-489
Impacts of mining activity can be particularly difficult to remediate in wetland ecosystems subject to inundation pulses due to the reduced length of the plant growing season. We used a factorial experiment to test whether litter and seed addition could be used to increase the efficiency of ecological restoration on a flood‐prone forest (known as igapó) impacted by deposition of bauxite tailings. Our results clearly showed that the addition of litter collected from pristine igapó areas increased plant growth, seedling density, and seedling species richness. The increase in individual plant growth was echoed at the community level with higher leaf area index values on litter addition plots compared to controls. Litter addition can enhance reaccumulation of nutrient pools during successional development, which has been proposed as an important feature to ensure self‐sustainability of areas under restoration. The success of the seed addition treatment depended on the species used. Of the seven sown species, only Acosmium nitens (a leguminous nitrogen‐fixing species) showed high establishment. The introduction of nitrogen‐fixing species is also expected to build up the nitrogen pool in the system as has been reported for restoration programs in non‐inundated forests. These practices have the advantage, compared to direct fertilizing, of not causing eutrophication of water bodies when applied to flood‐prone vegetation. 相似文献
5.
Natural regeneration in the context of large‐scale forest and landscape restoration in the tropics 下载免费PDF全文
Large‐scale and long‐term restoration efforts are urgently needed to reverse historical global trends of deforestation and forest degradation in the tropics. Restoration of forests within landscapes offers multiple social, economic, and environmental benefits that enhance lives of local people, mitigate effects of climate change, increase food security, and safeguard soil and water resources. Despite rapidly growing knowledge regarding the extent and feasibility of natural regeneration and the environmental and economic benefits of naturally regenerating forests in the tropics, tree planting remains the major focus of restoration programs. Natural regeneration is often ignored as a viable land‐use option. Here, we assemble a set of 16 original papers that provide an overview of the ecological, economic, and social dimensions of forest and landscape restoration (FLR), a relatively new approach to forest restoration that aims to regain ecological integrity and enhance human well‐being in deforested or degraded forest landscapes. The papers describe how spontaneous (passive) and assisted natural regeneration can contribute to achieving multiple social and ecological benefits. Forest and landscape restoration is centered on the people who live and work in the landscape and whose livelihoods will benefit and diversify through restoration activities inside and outside of farms. Given the scale of degraded forestland and the need to mitigate climate change and meet human development needs in the tropics, harnessing the potential of natural regeneration will play an essential role in achieving the ambitious goals that motivate global restoration initiatives. 相似文献
6.
7.
Ecological outcomes and livelihood benefits of community‐managed agroforests and second growth forests in Southeast Brazil 下载免费PDF全文
Saulo E. X. Franco de Souza Edson Vidal Germano de Freitas Chagas Amelia T. Elgar Pedro H. S. Brancalion 《Biotropica》2016,48(6):868-881
The Forest and Landscape Restoration movement has emerged as an approach to reconcile biodiversity conservation, ecosystem services provisioning and human well‐being in degraded landscapes, but little is known so far about the potential of different reforestation methods to achieve these objectives. Based on this gap, we assessed the ecological outcomes and local livelihood benefits of community‐managed agroforests and second growth forests to assist natural regeneration in the coastal Atlantic Forest of Brazil. We investigated and compared agroforests and secondary forests according to their structure and floristic composition in 51 circular plots of 314 m², their role in supporting local livelihoods (45 semi‐structured interviews) and the use and cultural importance of plant species (61 interviews). Agroforests and, more remarkably, managed secondary forests (1) re‐established a well‐developed forest structure, with a higher density of tree‐sized individuals and similar basal area compared to nearby old growth forests; (2) were composed by a rich array of native species, including five threatened species, but had lower species richness than old growth remnants; and (3) improved local livelihoods by supplying market valuable and culturally important plants, including 231 native ethnospecies. Overall, local production systems showed remarkable potential to engage smallholders of developing tropical countries in Forest and Landscape Restoration and contribute to achieve its overall goals. We advocate the promotion of these systems as effective Forest and Landscape Restoration approaches in multi‐scale programs and policies. 相似文献
8.
Animal‐dispersed plants are increasingly reliant on effective seed dispersal provided by small‐bodied frugivores in defaunated habitats. In the Neotropical region, the non‐native wild pig (Sus scrofa) is expanding its distribution and we hypothesized that they can be a surrogate for seed dispersal services lost by defaunation. We performed a thorough analysis of their interaction patterns, interaction frequencies, seed viability, and characteristics of the seed shadows they produce. We found 15,087 intact seeds in 56% of the stomachs and 5,186 intact seeds in 90% of the scats analyzed, 95% of which were smaller than 10 mm in diameter. Wild pigs were the third most effective disperser among 21 extant frugivore species in a feeding trail experiment in terms of quantity of seeds removed. Gut retention time was 70 ± 23 hr, indicating wild pigs can promote long‐distance seed dispersal. Seed survival after seed handling and gut passage by wild pigs was positively related with seed size, but large seeds were spat out and only smaller seeds were defecated intact, for which we observed a positive or neutral effect on germination relative to manually de‐pulped seeds. Finally, deposition of seeds was four times more frequent in unsuitable than suitable sites for seedling recruitment and establishment. Seed dispersal effectiveness by wild pigs is high in terms of the quantity of seeds dispersed but variable in terms of the quality of the service provided. Our study highlights that negative and positive effects delivered by non‐native species should be examined in a case by case scenario. Abstract in Portuguese is available with online material. 相似文献
9.
Susan G. W. Laurance William F. Laurance Ana Andrade Philip M. Fearnside Kyle E. Harms Alberto Vicentini Regina C. C. Luizão 《植被学杂志》2010,21(1):96-106
Question: How do soils and topography influence Amazonian tree diversity, a region with generally nutrient‐starved soils but some of the biologically richest tree communities on Earth? Location: Central Amazonia, near Manaus, Brazil. Methods: We evaluated the influence of 14 soil and topographic features on species diversity of rain forest trees (≥10 cm diameter at breast height), using data from 63 1‐ha plots scattered over an area of ~400 km2. Results: An ordination analysis identified three major edaphic gradients: (1) flatter areas had generally higher nutrient soils (higher clay content, carbon, nitrogen, phosphorus, pH and exchangeable bases, and lower aluminium saturation) than did slopes and gullies; (2) sandier soils had lower water storage (plant available water capacity), phosphorus and nitrogen; and (3) soil pH varied among sites. Gradient 2 was the strongest predictor of tree diversity (species richness and Fisher's α values), with diversity increasing with higher soil fertility and water availability. Gradient 2 was also the best predictor of the number of rare (singleton) species, which accounted on average for over half (56%) of all species in each plot. Conclusions: Although our plots invariably supported diverse tree communities (≥225 species ha?1), the most species‐rich sites (up to 310 species ha?1) were least constrained by soil water and phosphorus availability. Intriguingly, the numbers of rare and common species were not significantly correlated in our plots, and they responded differently to major soil and topographic gradients. For unknown reasons rare species were significantly more frequent in plots with many large trees. 相似文献