共查询到20条相似文献,搜索用时 15 毫秒
1.
Miriam Lerma;Nina Dehnhard;José Alfredo Castillo-Guerrero;Salvador Hernández-Vázquez;Christian C. Voigt;Stefan Garthe; 《Ecology and evolution》2024,14(4):e11255
Animals that co-occur in a region (sympatry) may share the same environment (syntopy), and niche differentiation is expected among closely related species competing for resources. The masked booby (Sula dactylatra) and smaller congeneric red-footed booby (Sula sula) share breeding grounds. In addition to the inter-specific size difference, females of both species are also larger than the respective males (reversed sexual size dimorphism). Although both boobies consume similar prey, sometimes in mixed-species flocks, each species and sex may specialize in terms of their diet or foraging habitats. We examined inter- and intra-specific differences in isotopic values (δ13C and δ15N) in these pelagically feeding booby species during the incubation period at Clarion Island, Mexico, to quantify the degrees of inter- and intra-specific niche partitioning throughout the annual cycle. During incubation, both species preyed mainly on flyingfish and squid, but masked boobies had heavier food loads than red-footed boobies. There was no overlap in isotopic niches between masked and red-footed boobies during breeding (determined from whole blood), but there was slight overlap during the non-breeding period (determined from body feathers). Female masked boobies had a higher trophic position than conspecific males during breeding; however, no such pattern was detected in red-footed boobies. These results provide evidence of inter- and intra-specific niche partitioning in these tropical seabird species, particularly during the breeding period and in the more-dimorphic species. Our results suggest that these closely related species use different strategies to cope with the same tropical marine environment. 相似文献
2.
Nere Zorrozua Asier Aldalur Alfredo Herrero Beñat Diaz Sergio Delgado Carola Sanpera Lluís Jover Juan Arizaga 《Ibis》2020,162(1):50-62
The ecology of opportunistic foragers can be highly dependent on anthropogenic food sources, such as landfills, resulting in changes in several ecological and demographic aspects. The total closure of several landfill sites and the use of deterrence systems to prevent access to the remaining open landfill sites in a region in the northern Iberian Peninsula provided an excellent opportunity to evaluate the consequences of landfills on the trophic ecology of an opportunistic forager, the Yellow-legged Gull Larus michahellis, using these resources. Based on stable isotope analyses, we used mixing models to estimate changes in diet before and after the closure of the majority of landfills in the breeding and the non-breeding season. We found a decrease in the consumption of food from landfills after their closure, which was accompanied by an increase in feeding on terrestrial prey (mostly earthworms), but only in the breeding season. Interestingly, we observed no increase in marine prey consumption after the landfill closures. In winter there was a decrease in terrestrial prey consumption, whereas the consumption of marine and, despite their reduce availability, landfill resources increased. Thus, and unlike when all the landfills were open, we detected significant trophic differences between breeding and non-breeding seasons. Additionally, we found significant trophic differences among colonies that were quite close to each other, but not between breeding adults and chicks. In conclusion, landfill closure or the use of deterrence systems had a direct impact on the trophic ecology of Yellow-legged Gulls; loss of refuse was mainly compensated for by prey of terrestrial origin when breeding, but not in winter. Thus, this species may experience foraging constraints in winter with potential effects on other life-history aspects including their dispersal, breeding and survival that needs further evaluation. 相似文献
3.
Aaron B. Carlisle Kenneth J. Goldman Steven Y. Litvin Daniel J. Madigan Jennifer S. Bigman Alan M. Swithenbank Thomas C. Kline Jr Barbara A. Block 《Proceedings. Biological sciences / The Royal Society》2015,282(1799)
Ontogenetic changes in habitat are driven by shifting life-history requirements and play an important role in population dynamics. However, large portions of the life history of many pelagic species are still poorly understood or unknown. We used a novel combination of stable isotope analysis of vertebral annuli, Bayesian mixing models, isoscapes and electronic tag data to reconstruct ontogenetic patterns of habitat and resource use in a pelagic apex predator, the salmon shark (Lamna ditropis). Results identified the North Pacific Transition Zone as the major nursery area for salmon sharks and revealed an ontogenetic shift around the age of maturity from oceanic to increased use of neritic habitats. The nursery habitat may reflect trade-offs between prey availability, predation pressure and thermal constraints on juvenile endothermic sharks. The ontogenetic shift in habitat coincided with a reduction of isotopic niche, possibly reflecting specialization upon particular prey or habitats. Using tagging data to inform Bayesian isotopic mixing models revealed that adult sharks primarily use neritic habitats of Alaska yet receive a trophic subsidy from oceanic habitats. Integrating the multiple methods used here provides a powerful approach to retrospectively study the ecology and life history of migratory species throughout their ontogeny. 相似文献
4.
Inês Catry Ana Sampaio Mnica C. Silva Francisco Moreira Aldina M. A. Franco Teresa Catry 《Ibis》2019,161(2):272-285
Diet studies are crucial for understanding the ecology and evolution of species, as well as for establishing appropriate conservation and management strategies. However, they remain methodologically challenging due to variation between seasons, sites, sexes or age groups and even variation between individuals. Due to method‐specific characteristics and biases, a combination of existing techniques can overcome the inherent limitations of each technique and provide a more accurate and broad picture of species’ food preferences. Here, we examine diet information obtained using three different assessment methods to better understand the trophic ecology of the European Roller Coracias garrulus, a species targeted by conservation measures in Europe. First, we analysed regurgitated pellets and video‐recordings to report the diet composition of adult and nestling Rollers, respectively. Secondly, we used stable isotope analysis (SIA) to investigate adult sexual diet segregation as well as to confirm the main findings regarding adult and nestling diets obtained through conventional methods. Based on the analysis of pellets, the diet of adult Rollers was dominated by Coleoptera, whereas camera images revealed that the diet of nestlings was dominated by Orthoptera, mainly grasshoppers and bush crickets. Blood isotopic signatures of adult and nestling Rollers confirmed the results obtained through pellet and video‐recording techniques. Of the three methods, pellet analysis provided the most comprehensive trophic information regarding the detectable prey spectrum and prey species contribution, as well as basic diet information for the SIA. Our results also highlight the potential of SIA for assessing intraspecific variation in diet by sampling individuals of known age and sex, which is often unfeasible through conventional approaches. SIA analysis showed no differences in δ13C and δ15N ratios of blood between males and females and a high degree of overlap amongst isotopic niches, suggesting no sex‐specific partitioning in resource use. Overall, we showed that the combination of different methods could be used to gain new and clearer insights into avian trophic ecology that are essential for informing habitat management aiming to improve availability of foraging resources. 相似文献
5.
Compound‐specific stable isotope analysis (CSIA) of amino acids (AA) has rapidly become a powerful tool in studies of food web architecture, resource use, and biogeochemical cycling. However, applications to avian ecology have been limited because no controlled studies have examined the patterns in AA isotope fractionation in birds. We conducted a controlled CSIA feeding experiment on an avian species, the gentoo penguin (Pygoscelis papua), to examine patterns in individual AA carbon and nitrogen stable isotope fractionation between diet (D) and consumer (C) (Δ13CC‐D and Δ15NC‐D, respectively). We found that essential AA δ13C values and source AA δ15N values in feathers showed minimal trophic fractionation between diet and consumer, providing independent but complimentary archival proxies for primary producers and nitrogen sources respectively, at the base of food webs supporting penguins. Variations in nonessential AA Δ13CC‐D values reflected differences in macromolecule sources used for biosynthesis (e.g., protein vs. lipids) and provided a metric to assess resource utilization. The avian‐specific nitrogen trophic discrimination factor (TDFGlu‐Phe = 3.5 ± 0.4‰) that we calculated from the difference in trophic fractionation (Δ15NC‐D) of glutamic acid and phenylalanine was significantly lower than the conventional literature value of 7.6‰. Trophic positions of five species of wild penguins calculated using a multi‐TDFGlu‐Phe equation with the avian‐specific TDFGlu‐Phe value from our experiment provided estimates that were more ecologically realistic than estimates using a single TDFGlu‐Phe of 7.6‰ from the previous literature. Our results provide a quantitative, mechanistic framework for the use of CSIA in nonlethal, archival feathers to study the movement and foraging ecology of avian consumers. 相似文献
6.
稳定同位素技术广泛地用于描绘生态系统中食物网的食物来源和营养级关系,但是消费者不同组织转化率的研究相对较少。通过锦鲤摄食人工添加15N蓝藻的食性转化实验,研究不同组织N同位素转化率的差异,探讨组织生长和代谢对同位素转化的相对贡献,为不同时间尺度的稳定同位素研究取样奠定基础。结果表明,通过42d的加富蓝藻饲喂,各组织的N稳定同位素发生显著变化。肝的δ15N为(19.3±1.4)‰,显著高于其它组织,其次为鱼鳍((15.6±1.0)‰)和血液((12.6±0.4)‰),肌肉的δ15N‰最低,为(9.9±0.7)‰。在随后的同位素稀释实验中,锦鲤的体重增加,相对生长速率为0.011d-1,鳍肉的转化率最快,达到11.4%/d,半衰期仅为6.1d,其次是血液和肝,肌肉的转化率最低,仅有3.8%/d,半衰期最长,为18.4d。代谢衰减指数c和-1不存在显著差异,表明锦鲤各组织的N同位素转化主要由组织生长引起。结论显示,同位素富集-稀释法可以有效评价鱼类食性转变对不同组织同位素转化的差异,鳍肉和血液同位素分析可以作为锦鲤食性转变快速追踪的手段。 相似文献
7.
Fernanda De Felipe Jos M. Reyes‐Gonzlez Teresa Milito Vernica C. Neves Joël Bried Daniel Oro Raül Ramos Jacob Gonzlez‐Solís 《Ecology and evolution》2019,9(18):10145-10162
Sexual segregation (SS) is widespread among animal taxa, with males and females segregated in distribution, behavior, or feeding ecology but so far, most studies on birds have focused on the breeding period. Outside this period, the relevance of segregation and the potential drivers of its persistence remain elusive, especially in the marine environment, where animals can disperse over vast areas and are not easily observed. We evaluated the degree of SS in spatio‐temporal distribution and phenology, at‐sea behavior, and feeding ecology during the nonbreeding period among three closely related shearwaters: Scopoli's, Cory's, and Cape Verde shearwaters (Calonectris diomedea, C. borealis, and C. edwardsii, respectively). We tracked 179 birds (92 males and 87 females) from 2008 to 2013 using geolocation‐immersion loggers and collected the 13th secondary remige (molted in winter) for stable isotope analyses as a proxy of trophic level and diet. The global nonbreeding distribution did not differ between sexes for the three species, but one specific nonbreeding area was visited only by males. Cory's shearwater males remained in areas closer to the colony in a larger proportion compared to females and returned earlier to the colony, probably to defend their nests. Males presented a slightly lower nocturnal flying activity and slightly (but consistently) higher isotopic values of δ13C and δ15N compared to females. These differences suggest subtle sexual differences in diet and a slightly higher trophic level in males, but the extent to which sexual dimorphism in bill size can determine them remains unclear. Our study showed that SS in ecological niche in seabirds can persist year‐round consistently but at a different extent when comparing the breeding and nonbreeding periods. Based on our findings, we propose that SS in these seabird species might have its origin in an ecological specialization derived from the different roles of males and females during reproduction, rather than from social dominance during the nonbreeding period. 相似文献
8.
Francisco Ramírez Andre Chiaradia Danielle A. O'Leary Richard D. Reina 《Ecology and evolution》2021,11(10):5393
The extrinsic and intrinsic factors affecting differing reproductive strategies among populations are central to understanding population and evolutionary ecology. To evaluate whether individual reproductive strategies responded to annual patterns in marine productivity and age‐related processes in a seabird we used a long term (2003–2013), a continuous dataset on nest occupancy and attendance at the colony by little penguins (Eudyptula minor) at Phillip Island (Victoria, Australia). We found that concurrent with a secondary annual peak of marine productivity, a secondary peak in colony attendance and nest occupancy was observed in Autumn (out of the regular breeding season in spring/summer) with individuals showing mating‐like behavior. Individuals attending this autumn peak averaged 2.5 years older than those individuals that exclusively bred during spring/summer. Rather than being a naïve response by younger and inexperienced birds misreading environmental cues, our data indicate that the autumn peak attendance is an earlier attempt to breed by older and more experienced penguins. Therefore, we provide strong support for the fundamental prediction of the life‐history theory of increasing investment in reproduction with age to maximize lifetime fitness as future survival prospects diminish and experience increases. 相似文献
9.
Insectivorous birds breeding in seasonal environments provision their dependent young during periods when prey diversity and abundance vary. Consequently, the composition and nutritional value of diets parents feed to their offspring may differ within and among broods, potentially affecting the condition of nestlings. In a population of mountain bluebirds (Sialia currucoides), we used two methods to estimate diet composition for individual nestlings: direct observation of provisioning using video recordings at 5 and 9 days post‐hatch, and stable isotopes of the δ13C and δ15N in nestling feathers and prey followed by analysis with mixing models. We determined the macronutrient content (% fat and lean mass) and estimated the metabolized energy from each type of prey. We evaluated whether different methods of estimating diet composition would produce similar results, and whether the types of prey nestlings ate at one or both ages affected their morphology, growth rates, or blood ketone concentration. We found that bluebirds fed their young 5 main types of prey: beetles, cicadas, grasshoppers, insect larvae, and spiders. Both observational and mixing model estimates of diet composition indicated that larvae are traded off with grasshoppers and that fewer larvae are provided to nestlings as the season progresses. In evaluating how diet influences individual growth and condition, estimates from direct observations had greater explanatory power than those from mixing models, indicating that diets rich in the most energy‐dense prey (greatest fat content; cicadas and larvae) were associated with larger size and higher body condition, and faster rate of mass gain and growth of tarsus. Lower value prey had more limited, specific effects on nestlings, but may still be important dietary components. While isotopic methods produced estimates of diet composition that were generally informative, when applied to explain the growth and condition of nestlings they proved less useful. 相似文献
10.
11.
Faysal Bibi Antoine Souron Hervé Bocherens Kevin Uno Jean-Renaud Boisserie 《Biology letters》2013,9(1)
Late Pliocene climate changes have long been implicated in environmental changes and mammalian evolution in Africa, but high-resolution examinations of the fossil and climatic records have been hampered by poor sampling. By using fossils from the well-dated Shungura Formation (lower Omo Valley, northern Turkana Basin, southern Ethiopia), we investigate palaeodietary changes in one bovid and in one suid lineage from 3 to 2 Ma using stable isotope analysis of tooth enamel. Results show unexpectedly large increases in C4 dietary intake around 2.8 Ma in both the bovid and suid, and possibly in a previously reported hippopotamid species. Enamel δ13C values after 2.8 Ma in the bovid (Tragelaphus nakuae) are higher than recorded for any living tragelaphin, and are not expected given its conservative dental morphology. A shift towards increased C4 feeding at 2.8 Ma in the suid (Kolpochoerus limnetes) appears similarly decoupled from a well-documented record of dental evolution indicating gradual and progressive dietary change. The fact that two, perhaps three, disparate Pliocene herbivore lineages exhibit similar, and contemporaneous changes in dietary behaviour suggests a common environmental driver. Local and regional pollen, palaeosol and faunal records indicate increased aridity but no corresponding large and rapid expansion of grasslands in the Turkana Basin at 2.8 Ma. Our results provide new evidence supporting ecological change in the eastern African record around 2.8 Ma, but raise questions about the resolution at which different ecological proxies may be comparable, the correlation of vegetation and faunal change, and the interpretation of low δ13C values in the African Pliocene. 相似文献
12.
Amanda D. Melin Brooke E. Crowley Shaun T. Brown Patrick V. Wheatley Gillian L. Moritz Fred Tuh Yit Yu Henry Bernard Donald J. DePaolo Andrew D. Jacobson Nathaniel J. Dominy 《American journal of physical anthropology》2014,154(4):633-643
Calcium stable isotope ratios are hypothesized to vary as a function of trophic level. This premise raises the possibility of using calcium stable isotope ratios to study the dietary behaviors of fossil taxa and to test competing hypotheses on the adaptive origins of euprimates. To explore this concept, we measured the stable isotope composition of contemporary mammals in northern Borneo and northwestern Costa Rica, two communities with functional or phylogenetic relevance to primate origins. We found that bone collagen δ13C and δ15N values could differentiate trophic levels in each assemblage, a result that justifies the use of these systems to test the predicted inverse relationship between bioapatite δ13C and δ44Ca values. As expected, taxonomic carnivores (felids) showed a combination of high δ13C and low δ44Ca values; however, the δ44Ca values of other faunivores were indistinguishable from those of primary consumers. We suggest that the trophic insensitivity of most bioapatite δ44Ca values is attributable to the negligible calcium content of arthropod prey. Although the present results are inconclusive, the tandem analysis of δ44Ca and δ13C values in fossils continues to hold promise for informing paleodietary studies and we highlight this potential by drawing attention to the stable isotope composition of the Early Eocene primate Cantius. Am J Phys Anthropol 154:633–643, 2014. © 2014 Wiley Periodicals, Inc. 相似文献
13.
Devin L. Johnson Michael T. Henderson Alastair Franke George J. F. Swan Robbie A. McDonald David L. Anderson Travis L. Booms Cory T. Williams 《Ecology and evolution》2023,13(1):e9709
- Stable isotope mixing models (SIMMs) are widely used for characterizing wild animal diets. Such models rely upon using accurate trophic discrimination factors (TDFs) to account for the digestion, incorporation, and assimilation of food. Existing methods to calculate TDFs rely on controlled feeding trials that are time-consuming, often impractical for the study taxon, and may not reflect natural variability of TDFs present in wild populations.
- We present TDFCAM as an alternative approach to estimating TDFs in wild populations, by using high-precision diet estimates from a secondary methodological source—in this case nest cameras—in lieu of controlled feeding trials, and provide a framework for how and when it should be applied.
- In this study, we evaluate the TDFCAM approach in three datasets gathered on wild raptor nestlings (gyrfalcons Falco rusticolus; peregrine falcons Falco perigrinus; common buzzards Buteo buteo) comprising contemporaneous δ13C & δ15N stable isotope data and high-quality nest camera dietary data. We formulate Bayesian SIMMs (BSIMMs) incorporating TDFs from TDFCAM and analyze their agreement with nest camera data, comparing model performance with those based on other relevant TDFs. Additionally, we perform sensitivity analyses to characterize TDFCAM variability, and identify ecological and physiological factors contributing to that variability in wild populations.
- Across species and tissue types, BSIMMs incorporating a TDFCAM outperformed any other TDF tested, producing reliable population-level estimates of diet composition. We demonstrate that applying this approach even with a relatively low sample size (n < 10 individuals) produced more accurate estimates of trophic discrimination than a controlled feeding study conducted on the same species. Between-individual variability in TDFCAM estimates for ∆13C & ∆15 N increased with analytical imprecision in the source dietary data (nest cameras) but was also explained by natural variables in the study population (e.g., nestling nutritional/growth status and dietary composition).
- TDFCAM is an effective method of estimating trophic discrimination in wild animal populations. Here, we use nest cameras as source dietary data, but this approach is applicable to any high-accuracy method of measuring diet, so long as diet can be monitored over an interval contemporaneous with a tissue's isotopic turnover rate.
14.
Shifting prey availability can lead to altered species interactions, indicated by variation in the dietary niche breadth and position of species within an assemblage. On the Newfoundland coast, annual inshore spawning migration of the dominant forage fish, Capelin Mallotus villosus, provides an excellent opportunity to investigate the influence of varying prey availability on dietary niche breadth and position among species. During June–August 2017, we investigated species‐ and assemblage‐level dietary responses to shifting Capelin availability of three Capelin‐eating, sympatrically breeding auk species, the Atlantic Puffin Fratercula arctica, Razorbill Alca torda and Common Murre Uria aalge. The diet of Leach's Storm Petrels Oceanodroma leucorhoa, which breed alongside the three auk species but are not known to rely on Capelin, was also examined to determine dietary shifts throughout breeding that were unrelated to Capelin availability. We quantified stable isotope ratios (δ15N, δ13C) in seabird blood components (plasma, cellular component) collected both before and after spawning Capelin arrived in the study area and compared isotopic niche breadth within a Bayesian framework. At the species level, auk trophic position increased and isotopic niche breadth narrowed after Capelin arrived, suggesting a more Capelin‐based diet. Simultaneously, trophic diversity of the auk assemblage, reflecting the extent of spacing among niches of species, decreased after spawning Capelin arrived inshore. Contrastingly, increased trophic position but broader isotopic niche breadth during higher relative to lower Capelin availability for Leach's Storm Petrel confirm that this species is probably not affected by the inshore arrival of Capelin, but instead that isotopic changes may be more related to a shift in breeding stage to chick‐rearing. Overall, our findings reiterate the importance of Capelin as a prey resource for breeding auks in coastal Newfoundland, but that the degree of reliance on Capelin varies among species, possibly allowing coexistence of these ecologically similar species. The findings highlight potential changing species interactions, such as increased competition, under declines in Capelin biomass. 相似文献
15.
Zubarev RA 《基因组蛋白质组与生物信息学报(英文版)》2011,9(1-2):15-20
Stable isotopes of most important biological elements, such as C, H, N and O, affect living organisms. In rapidly growing species, deuterium and to a lesser extent other heavy isotopes reduce the growth rate. At least for deuterium it is known that its depletion also negatively impacts the speed of biological processes. As a rule, living organisms "resist" changes in their isotopic environment, preferring natural isotopic abundances. This preference could be due to evolutionary optimization; an additional effect could be due to the presence of the "isotopic resonance". The isotopic resonance phenomenon has been linked to the choice of earliest amino acids, and thus affected the evolution of genetic code. To test the isotopic resonance hypothesis, literature data were analyzed against quantitative and qualitative predictions of the hypothesis. Four studies provided five independent datasets, each in very good quantitative agreement with the predictions. Thus, the isotopic resonance hypothesis is no longer simply plausible; it can now be deemed likely. Additional testing is needed, however, before full acceptance of this hypothesis. 相似文献
16.
ABSTRACT Research on stoat diet composition in New Zealand has primarily focussed on consumption of indigenous fauna in largely unmodified landscapes. This study used stomach content and stable isotope (δ13C and δ15N) analysis to assess stoat diet in a highly modified agricultural landscape in Southland, New Zealand, focussing on stoat predation of the mallard duck. Stoats were captured in Lochiel, Southland during August–November 2016 and 2017. Stomach content analysis of 26 captured stoats revealed limited stoat predation of mallards (n?=?1) and mallard eggs (n?=?1). Using liver tissue, stable isotope mixing models suggested that bird eggs on average met between 73 and 85% of stoat metabolic requirements throughout the mallard breeding period. Furthermore, mixing model outputs suggested that bird eggs made up a substantial proportion (77–84%) of stoat assimilated diet early in the mallard breeding period, when mallard eggs are readily available. In contrast, isotope mixing models suggested that mallard ducks/ducklings did not make a large overall contribution to stoat diets (< 3%). This study shows that stoats are an egg predator in the Southland agricultural landscape and mallard eggs may contribute to stoat assimilated diet early in the mallard breeding season before alternative prey items become available. 相似文献
17.
18.
The application of Bayesian methods to stable isotopic mixing problems, including inference of diet has the potential to revolutionise ecological research. Using simulated data we show that a recently published model MixSIR fails to correctly identify the true underlying dietary proportions more than 50% of the time and fails with increasing frequency as additional unquantified error is added. While the source of the fundamental failure remains elusive, mitigating solutions are suggested for dealing with additional unquantified variation. Moreover, MixSIR uses a formulation for a prior distribution that results in an opaque and unintuitive covariance structure. 相似文献
19.
20.
- Interspecific overlap in resource use can determine the degree to which different presumed guild members have distinct or similar effects on ecosystem processes or responses to environmental change. Many headwater streams of North America support multiple species of larval salamanders commonly defined as a single guild that can influence macroinvertebrate communities and nutrient dynamics and are sensitive to stream alteration.
- We explored macroinvertebrate distributions in conjunction with stable isotope and gut content analyses of salamanders to examine similarities in diet between two sympatric larval salamander species (Desmognathus quadramaculatus and Eurycea cirrigera) in four headwater streams. We determined the degree to which larval salamanders used similar prey functional feeding groups (FFGs) and taxa and determined the primary source habitat (pools versus riffles) of prey.
- Stable isotopes of carbon (δ13C) and nitrogen (δ15N) suggest the two salamander species occupied similar trophic positions and individual‐based stable isotope mixing models indicated similar use of macroinvertebrate predators and filterers by both species. Diet analyses were generally consistent with stable isotope results in identifying prey FFGs that composed the largest biomass of salamander diets. However, despite similarities in diet at the resolution of FFGs, there was little overlap in the specific taxa consumed by the two salamander species: 52 prey taxa were consumed over all samples, with only 16 taxa in common. Further, only five prey taxa were common in dominating diet biomass of both species; there was more overlap in taxa in terms of diet abundance.
- We assessed patterns in benthic macroinvertebrate biomass and compared the biomass of taxa that were in pools versus riffles to the biomass and abundance of taxa in salamander diets. Total macroinvertebrate biomass was generally higher in pools; however, the majority of salamander prey biomass was from riffle habitats, a trend that was stronger for D. quadramaculatus than for E. cirrigera. There was greater similarity in taxa comprising diet by abundance with the majority of prey items originating from pools.
- The larval salamander species used similar prey FFGs but differed significantly in specific prey taxa. We hypothesise that species differences in diets were most likely a function of differences in larval size and microhabitat use. Consequently, the treatment of larval salamanders as a guild is probably inadequate for predicting the effect of larval salamander diversity on some stream processes, and species may differ in how they respond to factors affecting prey assemblages.