首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Given that 29% of seabird species are threatened with extinction, protecting seabird colonies on offshore islands is a global conservation priority. Seabirds are vulnerable to non‐native predator invasions, which reduce or eliminate colonies. Accordingly, conservation efforts have focused on predator eradication. However, affected populations are often left to passively recover following eradications. Although seabirds are highly mobile, their life history traits such as philopatry can limit passive recolonization of newly predator‐free habitat. In such cases, seabird colonies can potentially be re‐instated with active restoration via chick translocations or social attraction methods, which can be risky and expensive. We used biogeographic and species‐specific behavioral data in the Hauraki Gulf, New Zealand, a global hotspot of seabird diversity and predator eradications, to illustrate the use of geographic information systems multi‐criteria decision analysis to prioritize islands for active seabird restoration. We identified nine islands with low observed passive recovery of seabirds posteradication over a 50‐year timeframe, and classified these as sites where active seabird management could be prioritized. Such spatially explicit tools are flexible, allowing for managers to choose case‐specific criteria such as time, funding, and goals constrained for their conservation needs. Furthermore, this flexibility can also be applied to threatened species management by customizing the decision criteria for individual species' capacity to passively recolonize islands. On islands with complex restoration challenges, decision tools that help island restoration practitioners decide whether active seabird management should be paired with eradication can optimize restoration outcomes and ecosystem recovery.  相似文献   

2.
Sampling oribatid mites in large areas using conventional methods is expensive, time‐consuming, and this constrains their use in environmental monitoring programs. We used samples collected in 38 plots of 3.75 ha spread over 30,000 ha in an Amazonian savanna to evaluate the reduction in costs and person‐hours in sampling and sorting and to elaborate cost‐effective protocols. Ten samples per plot were collected and extracted using a Berlese‐Tullgren apparatus. In the laboratory, samples were reduced to 50, 25, 12.5, and 6.25 percent of the initial content. Field‐effort reduction was estimated by reducing the number of subsamples per plot. Dissimilarity matrices were generated using Bray–Curtis, Sørensen, and Chao–Sørensen indices. Correlations between each reduced‐effort dissimilarity matrix and 100 or 50 percent sorting were used as an index of how much information was retained in reduced‐effort sampling, and could still be used in multivariate analyses. The effects of most predictor variables on mite composition were detected in data based on every level of sample reduction. The intensive sampling was insufficient to reveal the full oribatid‐mite fauna in the savanna; as more plots were sampled, more species were recorded. Our data indicate subsampling protocols for biodiversity assessment of oribatid mites in savanna that increase field and laboratory efficiency, and optimize both taxonomic and ecological aspects of the investigation.  相似文献   

3.
In the United States, renewable energy mandates calling for increased production of cellulosic biofuels will require a diversity of bioenergy feedstocks to meet growing demands. Within the suite of potential energy crops, plants within the genus Agave promise to be a productive feedstock in hot and arid regions. The potential distributions of Agave tequilana and Agave deserti in the United States were evaluated based on plant growth parameters identified in an extensive literature review. A geospatial suitability model rooted in fuzzy logic was developed that utilized a suite of biophysical criteria to optimize ideal geographic locations for this new crop, and several suitability scenarios were tested for each species. The results of this spatially explicit suitability model suggest that there is potential for Agave to be grown as an energy feedstock in the southwestern region of the United States – particularly in Arizona, California, and Texas and a significant portion of these areas are proximate to existing transportation infrastructure. Both Agave species showed the highest state‐level renewable energy benefit in Arizona, where agave plants have the potential to contribute 4.8–9.6% of the states' ethanol consumption, and 2.5–4.9% of its electricity consumption, for A. deserti and A. tequilana, respectively. This analysis supports the feasibility of Agave as a complementary bioenergy feedstock that can be grown in areas too harsh for conventional energy feedstocks.  相似文献   

4.
Animals access resources such as food and shelter, and acquiring these resources has varying risks and benefits, depending on the suitability of the landscape. Some animals change their patterns of resource selection in space and time to optimize the trade‐off between risks and benefits. We examine the circadian variation in resource selection of swamp wallabies (Wallabia bicolor) within a human‐modified landscape, an environment of varying suitability. We used GPS data from 48 swamp wallabies to compare the use of landscape features such as woodland and scrub, housing estates, farmland, coastal areas, wetlands, waterbodies, and roads to their availability using generalized linear mixed models. We investigated which features were selected by wallabies and determined whether the distance to different landscape features changed, depending on the time of the day. During the day, wallabies were more likely to be found within or near natural landscape features such as woodlands and scrub, wetlands, and coastal vegetation, while avoiding landscape features that may be perceived as more risky (roads, housing, waterbodies, and farmland), but those features were selected more at night. Finally, we mapped our results to predict habitat suitability for swamp wallabies in human‐modified landscapes. We showed that wallabies living in a human‐modified landscape selected different landscape features during day or night. Changing circadian patterns of resource selection might enhance the persistence of species in landscapes where resources are fragmented and disturbed.  相似文献   

5.
Global vegetation models predict rapid poleward migration of tundra and boreal forest vegetation in response to climate warming. Local plot and air‐photo studies have documented recent changes in high‐latitude vegetation composition and structure, consistent with warming trends. To bridge these two scales of inference, we analyzed a 24‐year (1986–2010) Landsat time series in a latitudinal transect across the boreal forest‐tundra biome boundary in northern Quebec province, Canada. This region has experienced rapid warming during both winter and summer months during the last 40 years. Using a per‐pixel (30 m) trend analysis, 30% of the observable (cloud‐free) land area experienced a significant (P < 0.05) positive trend in the Normalized Difference Vegetation Index (NDVI). However, greening trends were not evenly split among cover types. Low shrub and graminoid tundra contributed preferentially to the greening trend, while forested areas were less likely to show significant trends in NDVI. These trends reflect increasing leaf area, rather than an increase in growing season length, because Landsat data were restricted to peak‐summer conditions. The average NDVI trend (0.007 yr?1) corresponds to a leaf‐area index (LAI) increase of ~0.6 based on the regional relationship between LAI and NDVI from the Moderate Resolution Spectroradiometer. Across the entire transect, the area‐averaged LAI increase was ~0.2 during 1986–2010. A higher area‐averaged LAI change (~0.3) within the shrub‐tundra portion of the transect represents a 20–60% relative increase in LAI during the last two decades. Our Landsat‐based analysis subdivides the overall high‐latitude greening trend into changes in peak‐summer greenness by cover type. Different responses within and among shrub, graminoid, and tree‐dominated cover types in this study indicate important fine‐scale heterogeneity in vegetation growth. Although our findings are consistent with community shifts in low‐biomass vegetation types over multi‐decadal time scales, the response in tundra and forest ecosystems to recent warming was not uniform.  相似文献   

6.
7.
Within the framework of process analytical technology, infrared spectroscopy (IR) has been used for characterization of biopharmaceutical production processes. Although noninvasive attenuated total reflection (ATR) spectroscopy can be regarded as gold standard within IR‐based process analytics, simpler and more cost‐effective mid‐infrared (MIR) instruments might improve acceptability of this technique for high‐level monitoring of small scale experiments as well as for academia where financial restraints impede the use of costly equipment. A simple and straightforward at‐line mid‐IR instrument was used to monitor cell viability parameters, activity of lactate dehydrogenase (LDH), amount of secreted antibody, and concentration of glutamate and lactate in a Chinese hamster ovary cell culture process, applying multivariate prediction models, including only 25–28 calibration samples per model. Glutamate amount could be predicted with high accuracy (R2 0.91 for independent test‐set) while antibody concentration achieved good prediction for concentrations >0.4 mg L?1. Prediction of LDH activity was accurate except for the low activity regime. The model for lactate monitoring was only moderately good and requires improvements. Relative cell viability between 20 and 95% could be predicted with low error (8.82%) in comparison to reference methods. An initial model for determining the number of nonviable cells displayed only acceptable accuracy and requires further improvement. In contrast, monitoring of viable cell number showed better accuracy than previously published ATR‐based results. These results prove the principal suitability of less sophisticated MIR instruments to monitor multiple parameters in biopharmaceutical production with relatively low investments and rather fast calibration procedures. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:578–584, 2015  相似文献   

8.
Abstract Fine‐scale habitat preferences of three co‐occurring mycophagous mammals were examined in a tropical wet sclerophyll forest community in north‐eastern Australia. Two of the three mammal species responded to fine‐scale variation in vegetation and landform around individual trap locations. At a broad scale, the northern bettong (Bettongia tropica), an endangered marsupial endemic to the Australian wet tropics region, showed a preference for ridges over mid‐slopes and gullies, irrespective of forest type. In contrast, the northern brown bandicoot (Isoodon macrourus), a widespread marsupial, displayed a preference for Eucalyptus woodland over adjacent Allocasuarina forest, irrespective of topographic category. The giant white‐tailed rat (Uromys caudimaculatus), a rodent endemic to the wet tropics, showed no particular preference for either forest type or topographic category. A multiple regression model of mammal capture success against three principal habitat gradients constructed from 21 habitat variables using principal component analysis indicated strong species‐specific preferences for fine‐scale vegetation assemblages. Bettongs preferred areas of Eucalyptus woodland with sparse ground cover, low densities of certain grass species, high density of tree stems and few pig diggings. Bandicoots, in contrast, favoured areas in both forest types with dense ground cover, fewer tree stems and greater numbers of pig diggings; that is, characteristics least favoured by bettongs. The striking differences in fine‐scale habitat preferences of these two mammals of similar body size and broad habitat requirements suggest a high degree of fine‐scale habitat partitioning. White‐tailed rats did not show preference for any of the habitat gradients examined.  相似文献   

9.
Animals select habitats that will ultimately optimize their fitness through access to favorable resources, such as food, mates, and breeding sites. However, access to these resources may be limited by bottom‐up effects, such as availability, and top‐down effects, such as risk avoidance and competition, including that with humans. Competition between wildlife and people over resources, specifically over space, has played a significant role in the worldwide decrease in large carnivores. The goal of this study was to determine the habitat selection of cheetahs (Acinonyx jubatus) in a human‐wildlife landscape at multiple spatial scales. Cheetahs are a wide‐ranging, large carnivore, whose significant decline is largely attributed to habitat loss and fragmentation. It is believed that 77% of the global cheetah population ranges outside protected areas, yet little is known about cheetahs’ resource use in areas where they co‐occur with people. The selection, or avoidance, of three anthropogenic variables (human footprint density, distance to main roads and wildlife areas) and five environmental variables (open habitat, semiclosed habitat, edge density, patch density and slope), at multiple spatial scales, was determined by analyzing collar data from six cheetahs. Cheetahs selected variables at different scales; anthropogenic variables were selected at broader scales (720–1440 m) than environmental variables (90–180 m), suggesting that anthropogenic pressures affect habitat selection at a home‐range level, whilst environmental variables influence site‐level habitat selection. Cheetah presence was best explained by human presence, wildlife areas, semiclosed habitat, edge density and slope. Cheetahs showed avoidance for humans and steep slopes and selected for wildlife areas and areas with high proportions of semiclosed habitat and edge density. Understanding a species’ resource requirements, and how these might be affected by humans, is crucial for conservation. Using a multiscale approach, we provide new insights into the habitat selection of a large carnivore living in a human‐wildlife landscape.  相似文献   

10.
In highly impaired watersheds, it is critical to identify both areas with desirable habitat as conservation zones and impaired areas with the highest likelihood of improvement as restoration zones. We present how detailed riparian vegetation mapping can be used to prioritize conservation and restoration sites within a riparian and instream habitat restoration program targeting 3 native fish species on the San Rafael River, a desert river in southeastern Utah, United States. We classified vegetation using a combination of object‐based image analysis (OBIA) on high‐resolution (0.5 m), multispectral, satellite imagery with oblique aerial photography and field‐based data collection. The OBIA approach is objective, repeatable, and applicable to large areas. The overall accuracy of the classification was 80% (Cohen's κ = 0.77). We used this high‐resolution vegetation classification alongside existing data on habitat condition and aquatic species' distributions to identify reaches' conservation value and restoration potential to guide management actions. Specifically, cottonwood (Populus fremontii) and tamarisk (Tamarix ramosissima) density layers helped to establish broad restoration and conservation reach classes. The high‐resolution vegetation mapping precisely identified individual cottonwood trees and tamarisk thickets, which were used to determine specific locations for restoration activities such as beaver dam analogue structures in cottonwood restoration areas, or strategic tamarisk removal in high‐density tamarisk sites. The site prioritization method presented here is effective for planning large‐scale river restoration and is transferable to other desert river systems elsewhere in the world.  相似文献   

11.

Aims

Eurasian forest‐steppes are among the most complex non‐tropical terrestrial ecosystems. Despite their considerable scientific, ecological and economic importance, knowledge of forest‐steppes is limited, particularly at the continental scale. Here we provide an overview of Eurasian forest‐steppes across the entire zone: (a) we propose an up‐to‐date definition of forest‐steppes, (b) give a short physiogeographic outline, (c) delineate and briefly characterize the main forest‐steppe regions, (d) explore forest‐steppe biodiversity and conservation status, and (e) outline forest‐steppe prospects under predicted climate change.

Location

Eurasia (29°–56°N, 16°–139°E).

Results and Conclusions

Forest‐steppes are natural or near‐natural vegetation complexes of arboreal and herbaceous components (typically distributed in a mosaic pattern) in the temperate zone, where the co‐existence of forest and grassland is enabled primarily by the semi‐humid to semi‐arid climate, complemented by complex interactions of biotic and abiotic factors operating at multiple scales. This new definition includes lowland forest–grassland macromosaics (e.g. in Eastern Europe), exposure‐related mountain forest‐steppes (e.g. in Inner Asia), fine‐scale forest–grassland mosaics (e.g. in the Carpathian Basin) and open woodlands (e.g. in the Middle East). Using criteria of flora, physiognomy, relief and climate, nine main forest‐steppe regions are identified and characterized. Forest‐steppes are not simple two‐phase systems, as they show a high level of habitat diversity, with forest and grassland patches of varying types and sizes, connected by a network of differently oriented edges. Species diversity and functional diversity may also be exceptionally high in forest‐steppes. Regarding conservation, we conclude that major knowledge gaps exist in determining priorities at the continental, regional, national and local levels, and in identifying clear target states and optimal management strategies. When combined with other threats, climate change may be particularly dangerous to forest‐steppe survival, possibly resulting in compositional changes, rearrangement of the landscape mosaic or even the latitudinal or altitudinal shift of forest‐steppes.  相似文献   

12.
Bayesian clustering methods are typically used to identify barriers to gene flow, but they are prone to deduce artificial subdivisions in a study population characterized by an isolation‐by‐distance pattern (IbD). Here we analysed the landscape genetic structure of a population of wild boars (Sus scrofa) from south‐western Germany. Two clustering methods inferred the presence of the same genetic discontinuity. However, the population in question was characterized by a strong IbD pattern. While landscape‐resistance modelling failed to identify landscape features that influenced wild boar movement, partial Mantel tests and multiple regression of distance matrices (MRDMs) suggested that the empirically inferred clusters were separated by a genuine barrier. When simulating random lines bisecting the study area, 60% of the unique barriers represented, according to partial Mantel tests and MRDMs, significant obstacles to gene flow. By contrast, the random‐lines simulation showed that the boundaries of the inferred empirical clusters corresponded to the most important genetic discontinuity in the study area. Given the degree of habitat fragmentation separating the two empirical partitions, it is likely that the clustering programs correctly identified a barrier to gene flow. The differing results between the work published here and other studies suggest that it will be very difficult to draw general conclusions about habitat permeability in wild boar from individual studies.  相似文献   

13.
Populations of long‐distance migrant birds are declining but it is unknown what role land cover change in non‐breeding areas may be playing in this process. Using compositional analysis, we assessed habitat selection by one such migrant, the Wood Warbler Phylloscopus sibilatrix, at a wintering site in the forest–savannah transition zone in Eastern Region, Ghana. There was a preference for forest, a habitat that is in marked decline at this site. Annual habitat mapping revealed that the area of forest declined by 26% between 2011/12 and 2013/14, mainly through clearance for conversion to arable land. Numbers of birds changed throughout the season, but despite the reduction in the preferred forest habitat, there was no change in the total number of birds recorded at the site over the study period. The number of birds recorded at a point was positively related to the proportion of cleared land, plantation and, to a lesser extent, dense forest within 100 m. Investigation of the fine‐scale habitat preferences of radiotagged Wood Warblers suggested that there was an optimum number of trees, around 66–143 per hectare, at which estimated probability of occupancy was 0.5, falling to a probability of 0.2 at 25 trees per hectare. We suggest that Wood Warblers may be buffered against the loss of forest habitat by their ability to utilize degraded habitats, such as well‐wooded farmland, that still retain a substantial number of trees. However, the continued loss of trees, from both forest and farmland is ultimately likely to have a negative impact on wintering Wood Warblers in the long‐term.  相似文献   

14.
Objective: To assess the cost‐effectiveness and cost‐benefit of Planet Health, a school‐based intervention designed to reduce obesity in youth of middle‐school age children. Research Methods and Procedures: Standard cost‐effectiveness analysis methods and a societal perspective were used in this study. Three categories of costs were measured: intervention costs, medical care costs associated with adulthood overweight, and costs of productivity loss associated with adulthood overweight. Health outcome was measured as cases of adulthood overweight prevented and quality‐adjusted life years (QALYs) saved. Cost‐effectiveness ratio was measured as the ratio of net intervention costs to the total number of QALYs saved, and net‐benefit was measured as costs averted by the intervention minus program costs. Results: Under base‐case assumptions, at an intervention cost of $33, 677 or $14 per student per year, the program would prevent an estimated 1.9% of the female students (5.8 of 310) from becoming overweight adults. As a result, an estimated 4.1 QALYs would be saved by the program, and society could expect to save an estimated $15, 887 in medical care costs and $25, 104 in loss of productivity costs. These findings translated to a cost of $4305 per QALY saved and a net saving of $7313 to society. Results remained cost‐effective under all scenarios considered and remained cost‐saving under most scenarios. Discussion: The Planet Health program is cost‐effective and cost‐saving as implemented. School‐based prevention programs of this type are likely to be cost‐effective uses of public funds and warrant careful consideration by policy makers and program planners.  相似文献   

15.
Aim To demonstrate how the interrelations of individual movements form large‐scale population‐level movement patterns and how these patterns are associated with the underlying landscape dynamics by comparing ungulate movements across species. Locations Arctic tundra in Alaska and Canada, temperate forests in Massachusetts, Patagonian Steppes in Argentina, Eastern Steppes in Mongolia. Methods We used relocation data from four ungulate species (barren‐ground caribou, Mongolian gazelle, guanaco and moose) to examine individual movements and the interrelation of movements among individuals. We applied and developed a suite of spatial metrics that measure variation in movement among individuals as population dispersion, movement coordination and realized mobility. Taken together, these metrics allowed us to quantify and distinguish among different large‐scale population‐level movement patterns such as migration, range residency and nomadism. We then related the population‐level movement patterns to the underlying landscape vegetation dynamics via long‐term remote sensing measurements of the temporal variability, spatial variability and unpredictability of vegetation productivity. Results Moose, which remained in sedentary home ranges, and guanacos, which were partially migratory, exhibited relatively short annual movements associated with landscapes having very little broad‐scale variability in vegetation. Caribou and gazelle performed extreme long‐distance movements that were associated with broad‐scale variability in vegetation productivity during the peak of the growing season. Caribou exhibited regular seasonal migration in which individuals were clustered for most of the year and exhibited coordinated movements. In contrast, gazelle were nomadic, as individuals were independently distributed and moved in an uncoordinated manner that relates to the comparatively unpredictable (yet broad‐scale) vegetation dynamics of their landscape. Main conclusions We show how broad‐scale landscape unpredictability may lead to nomadism, an understudied type of long‐distance movement. In contrast to classical migration where landscapes may vary at broad scales but in a predictable manner, long‐distance movements of nomadic individuals are uncoordinated and independent from other such individuals. Landscapes with little broad‐scale variability in vegetation productivity feature smaller‐scale movements and allow for range residency. Nomadism requires distinct integrative conservation strategies that facilitate long‐distance movements across the entire landscape and are not limited to certain migration corridors.  相似文献   

16.
The fitness effect of a mutation can depend on both its genetic background, known as epistasis, and the prevailing external environment. Many examples of these dependencies are known, but few studies consider both aspects in combination, especially as they affect mutations that have been selected together. We examine interactions between five coevolved mutations in eight diverse environments. We find that mutations are, on average, beneficial across environments, but that there is high variation in their fitness effects, including many examples of mutations conferring a cost in some, but not other, genetic background‐environment combinations. Indeed, even when global interaction trends are accounted for, specific local mutation interactions are common and differed across environments. One consequence of this dependence is that the range of trade‐offs in genotype fitness across selected and alternative environments are contingent on the particular evolutionary path followed over the mutation landscape. Finally, although specific interactions were common, there was a consistent pattern of diminishing returns epistasis whereby mutation effects were less beneficial when added to genotypes of higher fitness. Our results underline that specific mutation effects are highly dependent on the combination of genetic and external environments, and support a general relationship between a genotype's current fitness and its potential to increase in fitness.  相似文献   

17.
Rough‐and‐tumble play (RT) is a widespread phenomenon in mammals. Since it involves competition, whereby one animal attempts to gain advantage over another, RT runs the risk of escalation to serious fighting. Competition is typically curtailed by some degree of cooperation and different signals help negotiate potential mishaps during RT. This review provides a framework for such signals, showing that they range along two dimensions: one from signals borrowed from other functional contexts to those that are unique to play, and the other from purely emotional expressions to highly cognitive (intentional) constructions. Some animal taxa have exaggerated the emotional and cognitive interplay aspects of play signals, yielding admixtures of communication that have led to complex forms of RT. This complexity has been further exaggerated in some lineages by the development of specific novel gestures that can be used to negotiate playful mood and entice reluctant partners. Play‐derived gestures may provide new mechanisms by which more sophisticated communication forms can evolve. Therefore, RT and playful communication provide a window into the study of social cognition, emotional regulation and the evolution of communication systems.  相似文献   

18.
Ribosomes tightly interact with protein‐conducting channels in the plasma membrane of bacteria (SecYEG) and in the endoplasmic reticulum of eukaryotes (Sec61 complex). This interaction is mediated by multiple junctions and is highly conserved during evolution. Although it is well known that both ribosomal proteins and ribosomal RNA (rRNA) are involved in the ribosome–channel interaction, detailed analyses on how these components contribute to this binding are lacking. Here, we demonstrate that the evolutionary conservation of ribosome binding is solely mediated by rRNA. Moreover, we show that in vitro transcribed 23 S rRNA binds with similar characteristics to protein translocation channels as native 23 S rRNA or 50 S ribosomal subunits. This indicates that base modifications, which exist in native rRNA, do not crucially influence the binding. In two of the ribosome‐channel junctions (c1 and c2), exclusively rRNA helices are involved. Using in vitro transcribed rRNA mutants, we now provide evidence that large parts of the rRNA can be deleted without altering its binding properties, as long as the rRNA helices of the c1 and c2 junctions remain intact. We demonstrate that the connection sites c1 and c2 generate high‐affinity binding sites that act independently of each other. This could explain why membrane‐bound ribosomes have an extremely low off‐rate .  相似文献   

19.
20.
Washing is a standard step for enzyme‐linked immunosorbent assays (ELISA) performed on a paper‐based chip, in which nonspecific‐binding antibodies and antigens should be removed completely from the paper surface. In this study, a novel three‐dimensional (3D) washing strategy using a heating ring‐oven was carried out on a paper‐based chip. Compared with a plane washing mode by a ring‐oven, this 3D washing strategy obtained a lower background, as gravity played an important role in the washing step. The paper‐based chip was placed on a 3D plastic holder and the waste area was connected to a heating ring. Use of a heating waste area meant that the nonspecific‐binding protein was continuously carried to the waste area through gravity and capillary action. The angle between the plastic holder and the ring plane was carefully selected. The effect of washing on different parts of the detection area was investigated by upconversion fluorescence and chemiluminescence (CL). This novel 3D washing strategy was performed for carcinoembryonic antigen detection through CL and a lower detection limit of 2 pg ml?1 was obtained. This approach provides an effective washing strategy to remove nonspecific‐binding antibody from a paper‐based immunodevice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号