首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A small number of vertebrate species, including some frogs, are freezing tolerant and survive ice forming in their bodies under ecologically relevant conditions. Habitat use information is critical for interpreting laboratory studies of freezing tolerance, but there is often little known about the winter habitat and behaviours of the species under study. This work describes microhabitats used by the freezing‐tolerant frog Litoria ewingii Duméril and Bibron 1841 and their temperature characteristics. In winter, L. ewingii used microhabitats with wood, located further away from water than in summer. Microhabitat temperature records showed that frog microhabitats regularly fell below the temperature at which frog body fluids freeze (?1°C), and cooled substantially more slowly than did the air temperature. Temperatures were highly variable between microhabitats, seasons and years, with a minimum of ?2.4°C and a maximum cooling rate of 0.77°C h?1. Frozen frogs were observed to recover in the field, demonstrating freezing tolerance. Both the characteristics of microhabitats and their selection are important in ensuring freezing survival.  相似文献   

2.
1. Large river floodplains are considered key nursery habitats for many species of riverine fish. The lower Volga River floodplains (Russian Federation) are still relatively undisturbed, serving as a suitable model for studying the influence of flooding and temperature on fish recruitment in floodplain rivers. 2. We examined the interannual variability in recruitment success of young‐of‐the‐year (YOY) fish in the lower Volga floodplain in relation to flood pulse characteristics and rising water temperatures in the spring. We sampled four areas with different flooding regimes, in three consecutive years (2006–2008). 3. Extensive areas with a long duration of flooding accommodated high densities of young fish. This suggests that extended inundation improves the recruitment success of river fish. In areas with extensive flooding, the biomass of YOY of most fish species was about three times higher in 2006 and 2007 than in 2008. We hypothesise that low spring temperatures in 2008 may have caused this reduced recruitment and that a flood synchronised with rising temperature enhances recruitment success. 4. Extensive flooding was particularly favourable for species characterised by large body size, delayed maturation, high fecundity and low parental investment, such as pike Esox lucius, roach Rutilus rutilus and ide Leuciscus idus. Gibel carp Carassius gibelio, a species tolerant of high temperature and hypoxia, did particularly well in small waterbodies in the driest parts of the floodplain. 5. Structural characteristics of floodplain waterbodies explained much of YOY fish density. These species–environment associations varied from year to year, but some species such as common bream Abramis brama, roach and gibel carp showed consistent relationships with structural habitat characteristics in all years, despite large interannual fluctuations in flood pulse and spring temperature.  相似文献   

3.
Crawfish frogs (Lithobates areolatus) have experienced declines across large portions of their former range. These declines are out of proportion to syntopic wetland-breeding amphibian species, suggesting losses are resulting from unfavorable aspects of non-breeding upland habitat. Crawfish frogs get their common name from their affinity for crayfish burrows, although the strength of this relationship has never been formally assessed. We used radiotelemetry to address 4 questions related to upland burrow dwelling in crawfish frogs: 1) what burrow types are used and how do they function to affect crawfish frog survivorship; 2) what are the physical characteristics and habitat associations of crawfish frog burrows; 3) what are the home range sizes of crawfish frogs when burrow dwelling; and 4) where are crawfish frog burrows situated with respect to breeding wetlands? We tracked crawfish frogs to 34 burrows, discovered another 7 occupied burrows, and therefore report on 41 burrows. Crawfish frogs exclusively occupied crayfish burrows as primary burrows, which they inhabited for an average of 10.5 months of the year. With one exception, crawfish frogs also used crayfish burrows as secondary burrows—temporary retreats occupied while exhibiting breeding migrations or ranging forays. Burrows were exclusively located in grassland habitats, although crawfish frogs migrated through narrow woodlands and across gravel roads to reach distant grassland primary burrow sites. Home range estimates while inhabiting burrows were 0.05 m2 (the area of the burrow entrance plus the associated feeding platform) or 0.01 m3 (the estimated volume of their burrow). Crawfish frog burrows were located at distances up to 1,020 m from their breeding wetlands. To protect crawfish frog populations, we recommend a buffer (core habitat plus terrestrial buffer) of at least 1.2 km around each breeding wetland. Within this buffer, at least 3 critical habitat elements must be present: 1) extensive grasslands maintained by prescribed burning and/or logging, 2) an adequate number of upland crayfish burrows, and 3) no soil disturbance of the sort that would destroy crayfish burrow integrity. © 2012 The Wildlife Society.  相似文献   

4.
1. In their natural state, river floodplains are composed of a complex mosaic of contrasting aquatic and terrestrial habitats. These habitats are expected to differ widely in their properties and corresponding ecological processes, although empirical data on their capacity to produce, store and transform organic matter and nutrients are limited. 2. The objectives of this study were (i) to quantify the spatiotemporal variation of respiration, a dominant carbon flux in ecosystems, in a complex river floodplain, (ii) to identify the environmental drivers of respiration within and among floodplain habitat types and (iii) to calculate whole‐floodplain respiration and to put these values into a global ecosystem context. 3. We measured soil and sediment respiration (sum of root and heterotrophic respiration; SR) throughout an annual cycle in two aquatic (pond and channel) and four terrestrial (gravel, large wood, vegetated island and riparian forest) floodplain habitat types in the island‐braided section of the near‐natural Tagliamento River (NE Italy). 4. Floodplain habitat types differed greatly in substratum composition (soil to coarse gravel), organic matter content (0.63 to 4.1% ash‐free dry mass) and temperature (seasonal range per habitat type: 8.6 to 33.1 °C). Average annual SR ranged from 0.54 ± 1.56 (exposed gravel) to 3.94 ± 3.72 μmol CO2 m?2 s?1 (vegetated islands) indicating distinct variation in respiration within and among habitat types. Temperature was the most important predictor of SR. However, the Q10 value ranged from 1.62 (channel habitat) to 4.57 (riparian forest), demonstrating major differences in habitat‐specific temperature sensitivity in SR. 5. Total annual SR in individual floodplain habitats ranged from 160 (ponds) to 1205 g C m?2 (vegetated islands) and spanned almost the entire range of global ecosystem respiration, from deserts to tropical forests.  相似文献   

5.
1. Chlorophyll a (Chl a) distribution across a 0.36 km2 restored floodplain (Cosumnes River, California) was analysed throughout the winter and spring flood season from January to June 2005. In addition, high temporal‐resolution Chl a measurements were made in situ with field fluorometers in the floodplain and adjacent channel. 2. The primary objectives were to characterise suspended algal biomass distribution across the floodplain at various degrees of connection with the channel and to correlate Chl a concentration and distribution with physical and chemical gradients across the floodplain. 3. Our analysis indicates that periodic connection and disconnection of the floodplain with the channel is vital to the functioning of the floodplain as a source of concentrated suspended algal biomass for downstream aquatic ecosystems. 4. Peak Chl a levels on the floodplain occurred during disconnection, reaching levels as high as 25 μg L?1. Chl a distribution across the floodplain was controlled by residence time and local physical/biological conditions, the latter of which were primarily a function of water depth. 5. During connection, the primary pond on the floodplain exhibited low Chl a (mean = 3.4 μg L?1) and the shallow littoral zones had elevated concentrations (mean = 4.6 μg L?1); during disconnection, shallow zone Chl a increased (mean = 12.4 μg L?1), but the pond experienced the greatest algal growth (mean = 14.7 μg L?1). 6. Storm‐induced floodwaters entering the floodplain not only displaced antecedent floodplain waters, but also redistributed floodplain resources, creating complex mixing dynamics between parcels of water with distinct chemistries. Incomplete replacement of antecedent floodplain waters led to localised hypoxia in non‐flushed areas. 7. The degree of complexity revealed in this analysis makes clear the need for high‐resolution spatial and temporal studies such as this to begin to understand the functioning of dynamic and heterogeneous floodplain ecosystems.  相似文献   

6.
Mitigating the threat of habitat loss requires actions such as restoring and creating new habitat. In order to effectively achieve this, species habitat requirements and use patterns need to be understood. While many studies have been conducted on the habitat choice of species, these generally focused on habitat use during periods of high activity and detection probability without considering seasonal shifts in habitat use. Understanding habitat selection by frogs during the winter season of low activity may be crucial since it may differ from that used during the summer and may be overlooked as important for population success. We describe the microhabitat use of the threatened green and golden bell frog (Litoria aurea) using radio tracking methods during winter when detection is low and knowledge is limited. We followed 26 individuals between May and July, 2011 to determine whether they selected specific overwintering microhabitats and related this to levels of individual exposure to predators, distance from the edge of the water and temperature of microhabitats. We found that overwintering bell frogs inhabited reeds and rock gabions more frequently than expected and that females used a reduced subset of microhabitats compared to males. Additionally, microhabitats used were more likely to conceal an individual from view, and the majority of overwintering sites were located within 5 m of the edge of the water which may be important for reducing the risk of predation and desiccation. Rock gabions had significantly warmer (1.2°C–1.8°C) mean temperatures than the other microhabitats used. The information presented here can be used in habitat creation and reintroduction programmes to provide habitat which is suitable during both the breeding and non‐breeding season for the conservation of other populations.  相似文献   

7.
The Pantanal Mato-grossense is an extensive floodplain system located in the center of South America with important macrophytic primary producers. This study describes the dynamics of net primary production and the biomass of the aquatic macrophyte Pontederia lanceolata, the dominant species in some floodplain fields near Poconé. Productivity was determined from a combination of demographic and growth methods. Biomass was determined using squares of known area, periodically distributed at random. The average productivity during the period was 3.11 g dry weight m-2 day-1. The minimum and maximum values (0.04 g dry weight m-2 day-1 and 8.59 g dry weight m-2 day-1, respectively) occurred during the drought and the flood period, respectively. The standing stock varied between 12.7 and 235.9 g dry weight m-2, determined at the beginning of the flood and at its peak, respectively. The dynamics of the productivity and the standing stock of the species are associated with the flood patterns of the area and with life cycle of the plant.  相似文献   

8.
The selection of a sampling protocol is critical to study amphibian and reptile communities and in many instances researchers have combined the use of visual encounter surveys (VES) conducted on trails and off trails. The effect of human‐made trails on relative abundance estimates of amphibians and reptiles has been assessed in a few temperate locations, but data are lacking for tropical sites. Our study was designed to address this issue by comparing abundance estimates of frogs and lizards on and off trails in a lowland rainforest in south‐eastern Perú. We used nocturnal VES to sample frogs and lizards along transects established on trails and off trails in two different forest types. We found that the observed relative abundance estimates of frogs and lizards were affected by the location of transects (on trail vs. off trail) and the type of forest (floodplain forest vs. terra firme forest). We also found an interaction between the two main effects, indicating that the effect of transect location with respect to trails varies as a function of habitat. Observed frog abundances were higher on trails than off trails, indicating that studies that include VES on trails will bias relative abundance estimates in contrast to studies that include only VES off trails. We suggest that transects should be established only off trails, especially for monitoring studies because trail use by humans can have a strong influence on observed animal abundance.  相似文献   

9.
Amazonian floodplain forests have remarkable variation in tree diversity and structure related to flood duration. We assessed how floodplain forests respond to the continuum flooding gradient and found that Fisher's α values vary up to seven times across the landscape.  相似文献   

10.
Primary productivity, community respiration, chlorophyll a concentration, phytoplankton species composition, and environmental factors were compared in the Yolo Bypass floodplain and adjacent Sacramento River in order to determine if passage of Sacramento River through floodplain habitat enhanced the quantity and quality of phytoplankton carbon available to the aquatic food web and how primary productivity and phytoplankton species composition in these habitats were affected by environmental conditions during the flood season. Greater net primary productivity of Sacramento River water in the floodplain than the main river channel was associated with more frequent autotrophy and a higher P:R ratio, chlorophyll a concentration, and phytoplankton growth efficiency (αB). Total irradiance and water temperature in the euphotic zone were positively correlated with net primary productivity in winter and early spring but negatively correlated with net primary productivity in the late spring and early summer in the floodplain. In contrast, net primary productivity was correlated with chlorophyll a concentration and streamflow in the Sacramento River. The flood pulse cycle was important for floodplain production because it facilitated the accumulation of chlorophyll a and wide diameter diatom and green algal cells during the drain phase. High chlorophyll a concentration and diatom and green algal biomass enabled the floodplain to export 14–37% of the combined floodplain plus river load of total, diatom and green algal biomass and wide diameter cells to the estuary downstream, even though it had only 3% of the river streamflow. The study suggested the quantity and quality of riverine phytoplankton biomass available to the aquatic food web could be enhanced by passing river water through a floodplain during the flood season.  相似文献   

11.
Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond‐breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata; and Southern Leopard frogs, Lithobates sphenocephalus) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond‐breeding amphibian species.  相似文献   

12.
The flow of long-chain polyunsaturated fatty acids (PUFAs) of the omega-3 family, namely, eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), exported by amphibian metamorphs from water to terrestrial ecosystems in the Medveditsa River floodplain, was quantified for the first time. The total biomass export by three amphibian species (Pelobates fuscus, Bombina bombina, and Pelophylax ridibundus) per unit area of the lake surface was 0.594 g/m2 per year (as a mean for 2 years). The biomass flow per unit area of land was 0.726 g/ha per year (0.302 g/ha per year for organic carbon) in 2015–2016. The average annual total removal of EPA + DHA by amphibians from the floodplain lake was 1.47 mg/m2 of water surface area. Due to the high content of EPA and DHA in biomass, amphibians are potentially a valuable food for terrestrial predators having no access to other sources of essential PUFAs.  相似文献   

13.
Vegetation and underground structures are known to influence flood avoidance and flood resistance in invertebrates. In bimonthly-flooded European salt marshes, recent invasions by the nitrophilous grass Elymus athericus strongly modified usual habitat structure, notably by the production of a deep litter layer. Consequently, invaded habitats provide more interstitial spaces that may act as a refuge during flood events. By using both controlled and field designs, we tested whether invaded habitats may change the ability to resist flooding by the creation of new refuges during tides for a ground-living, predatory arthropod. The wolf spider Arctosa fulvolineata was employed as a model species since it occurs abundantly in both invaded and uninvaded salt-marsh habitats. In the field, its abundance strongly decreased (divided by three) after tidal flooding in uninvaded habitats by but did not change in invaded patches. Under controlled laboratory conditions, ten times more individuals withstood simulated flooding in the presence of litter and less decided to float. The presence of litter did not influence flood resistance, i.e. survival underwater. Our results show that habitat structure (i.e. the presence of litter) influences flood-avoiding behavior of A. fulvolineata, by providing more refuges. As the invasion of E. athericus alters salt-marsh habitat structure, it may enhance population size of a rare predatory spider by changing its behavior during flooding and resulting in less deleterious impacts of tides. Yet biological invasions are detrimental for biodiversity conservation, our study shows that an invasive species might indirectly benefit a few mobile rare species in a flood-disturbed habitat.  相似文献   

14.
Flood disturbance and water resource availability vary sharply over time and space along arid‐region rivers and can interact in complex fashion to shape diversity patterns. Plant diversity showed spatial patterning along a topogradient from the floodplain of the San Pedro River (Arizona, USA) to the arid upland, but the patterns shifted temporally as the suite of limiting factors changed. During two of three sampling times, spatial diversity patterns were shaped primarily by gradients of water availability, the regional limiting factor. In the summer dry season, microscale diversity (species richness per 1 m2) and mesoscale diversity (cumulative species and functional types in 20, 1‐m2 plots) of herbaceous plants decreased along the topogradient from floodplain to upland, reflecting the greater water availability on the low surfaces. During a summer wet season with moderate rains and flooding, diversity increased in all hydrogeomorphic zones (floodplain, terrace, upland), but the spatial pattern along the topogradient persisted. Following a very wet winter, patterns along the topogradient reversed: scour from large floods limited diversity on the floodplain and competitive exclusion limited the diversity on undisturbed river terrace, while abundant rains allowed for high microscale diversity in the upland. Disturbance and resource availability thus interacted to influence plant species diversity in a fashion consistent with the dynamic‐equilibrium model of species diversity. In contrast to the microscale patterns, mesoscale diversity of species and functional types remained high in the floodplain during all sampling times, with 58% more plant species and 90% more functional types sampled in low floodplain than arid upland for the year as a whole. Species with a wide range of moisture and temperature affinities were present in the floodplain, and seasonal turnover of species was high in this zone. The floodplain zone of a perennial to intermittent‐flow river thus had greater plant diversity than arid Sonoran Desert upland, as measured at temporal scales that capture seasonal variance in resource and disturbance pulses and at spatial scales that capture the environmental heterogeneity of floodplains. Although periodically limited by intense flood disturbance, diversity remains high in the floodplain because of the combination of moderate resource levels (groundwater, seasonal flood water) and persistent effects of flood disturbance (high spatial heterogeneity, absence of competitive exclusion), in concert with the same climatic factors that produce seasonally high diversity in the region (temporally variable pulses of rainfall).  相似文献   

15.
In semi-arid floodplains the average times between floods have been cited to drive metabolic and biogeochemical responses during the subsequent flooding pulse. However, the interaction effects of flood pulse duration and the length of time between floods on the carbon budget are not well understood. Using field experiments, flood pulses—dry cycles were simulated (SF plots—short flood/dry cycles: 15 flood days + 7 dry + 15 flood and LF plots—long flood/dry cycles: 21 flood + 14 dry + 21 flood) in a semi-arid floodplain in Central Spain, in order to study the effects on soil CO2 emissions. Differences on soil water content among SF, LF and control plots were statistically significant throughout the experiment (p < 0.01). Soil CO2 emission rates during drying time were significantly related with the duration of previous flooding and inter-flooding intervals (R 2 = 0.52–0.64, p = 0.03). During the first stage of desiccation, the high soil water content appears to limit aerobic metabolism. Soil respiration rates similar to those of control plots measurements occurred 1–2 weeks later. Then, soil respiration increased to a maximum rate which was delayed 5–8 weeks, as high soil water content limited microbial activity. While more than 7 days of inundation promoted denitrification, organic nutrients supplied by flood water increased 1% soil respiration during drying. Differences between SF and LF plots in soil CO2 emissions only appeared after floodplain soil had been subjected to two consecutive flood-dry cycles; 70 days after the second inundation ended, CO2 fluxes achieved similar values in all treatments. Daily soil CO2 emission rates during the entire study period (117 days) were comparable, independently of the flood duration and the time between floods (75.76 ± 1.59 and 77.94 ± 0.45 mmol CO2 m?2 day?1, in SF and LF, respectively). Flood disturbance affects site-specific microbial processes, but only during very short time periods. The mechanism by which soil microbial communities cope or adapt to new conditions needs to be reassessed in future research in order to determine the long-term effects of hydrological changes in the soil carbon balance of semi-arid floodplains.  相似文献   

16.
Persicaria thunbergii is a representative annual herb in Korean wetlands, widely inhabits not only in lentic wetlands, but also in unstable riparian wetlands. To better understand the occupational strategy of this plant, we investigated environment, growth characteristics before and after harsh flooding disturbance in FDA (flooding disturbed area) and NDA (non-disturbed area). Water level, fresh soil moisture and organic matter of NDA were significantly higher than FDA. Before flooding disturbance, plant height, individual length, number of node, individual biomass and biomass per 1 m2 were significantly higher in FDA than in NDA. After flooding disturbance, plant height, biomass per 1 m2, coverage and relative coverage were significantly lower in FDA than in NDA, yet individual length, number of node, individual biomass and aerial seed production were not different. In FDA, creeping stems survive despite a flooding disturbance because they are parallel with the water flow and are firmly fixed to the ground through numerous adventitious roots. Surviving creeping stems make new shoots rapidly and P. thunbergii recovers its biomass during less than a month. Every regenerated shoots make reproductive organs. Thus, P. thunbergii can reproduce and successfully survive the next generation in the riparian habitat despite the harsh flooding disturbance every year.  相似文献   

17.
River-floodplain systems are amongst the most productive—but often severely impacted—aquatic systems worldwide. We explored the ecological response of fish to flow regime in a large river-floodplain system by studying the relationships between (1) discharge and inundated floodplain area, with a focus on spatial and temporal patterns in floodplain lake connectivity, and (2) flood volume and fisheries catch. Our results demonstrate a non-linear relationship between discharge and floodplain inundation with considerable hysteresis due to differences in inundation and drainage rate. Inundation extent was mostly determined by flood volume, not peak discharge. We found that the more isolated lakes (that is, lakes with a shorter connection duration to the river) are located at higher local elevation and at larger hydrological distance from the main rivers: geographical distance to the river appears a poor predictor of lake isolation. Although year-to-year fish catches in the floodplain were significantly larger with larger flood volumes in the floodplain, they were not in the main river, suggesting that mechanisms that increase catch, such as increased floodplain access or increased somatic growth, are stimulated by flooding in the floodplain, but not in the river. Fish species that profit from flooding belong to different feeding guilds, suggesting that all trophic levels may benefit from flooding. We found indications that the ecological functioning of floodplains is not limited to its temporary availability as habitat. Refugia can be present within the floodplain itself, which should be considered in the management of large rivers and their floodplain.  相似文献   

18.
ABSTRACT Although studies have addressed effects of abrupt transitions in habitat type (e.g., forest-clear-cut or forest-field edges) on amphibian movements, little is known about effects of more subtle habitat transitions on patterns of migration and habitat use in amphibians. We used radiotelemetry to study movement patterns of juvenile gopher frogs (Rana capito) emigrating from ponds that were surrounded by longleaf pine (Pinus palustris) forest that varied in structure as a result of fire suppression. Our primary purpose was to determine if frogs emigrate directionally from their natal ponds and select habitat at random during their first month following metamorphosis. We found that frogs emigrated in nonrandom directions from ponds that were surrounded by heterogeneous habitat and selected fire-maintained habitat that was associated with an open canopy, few hardwood trees, small amounts of leaf litter, and large amounts of wiregrass (Aristida beyrichiana). Fire-maintained habitat contained higher densities of burrows excavated by gopher tortoises (Gopherus polyphemus) and small mammals, which are the priamry refuge sites for both juvenile and adult gopher frogs. Frogs moved up to 691 m from their natal ponds, frequently crossed dirt roads, and even seemed to use these roads as migration corridors. To maintain suitable terrestrial habitat for gopher frogs, including habitat used by migrating individuals, it is important to apply frequent prescribed fire to uplands surrounding breeding ponds that lead all the way to the edges of breeding ponds, as well as through ponds during periodic droughts.  相似文献   

19.
Abstract: Many aquatic species in the arid southwestern United States are imperiled, persisting primarily in isolated, low-order streams that are increasingly vulnerable to stochastic disturbances. During 2003 and 2004, we surveyed 39 mountain canyons in southeastern Arizona, USA, for lowland leopard frogs (Rana yavapaiensis), a species that has declined in abundance and distribution across its range in the United States. We quantified habitat features at 2 spatial scales, canyon and pool, to identify features that distinguished sites inhabited by frogs from those uninhabited by frogs. Canyons inhabited by frogs had watersheds that averaged 8.1 km2 larger (SE = 2.52), pools that averaged 37.8 m3 greater (9.30) in volume, gradients that averaged 4.1% (1.40%) less steep, and locations that averaged 3.2 km closer (1.06) to the nearest valley stream than did uninhabited canyons. Plunge pools inhabited by frogs averaged 13.5% (5.66%) more perimeter vegetation, 11.2% (5.34%) more canopy cover, and 1.9 (0.60) more refuges than uninhabited pools. In general, canyons that provided more perennial water during dry summer months and plunge pools that provided more bank heterogeneity were more likely to be inhabited by frogs. Conservation of lowland leopard frogs and other aquatic species that inhabit xeric systems in the southwestern United States depends principally on maintaining riparian ecosystems that provide habitat for these species and the adjacent uplands that influence the structure and function of these systems. Therefore, both riparian areas and their adjacent uplands must be managed to maintain habitat for organisms that inhabit these rare and diverse ecosystems.  相似文献   

20.
1. The factors that promote coexistence of global invaders and native species are poorly understood. The role of abiotic factors in determining the dominance of invasive species is also an area of increasing interest. Gambusia holbrooki (Eastern Mosquitofish) is an important global invader, displacing endemic fish and frogs on four continents. However, Gambusia co‐occurs with a similar‐sized fish (Hypseleotris spp.) in dynamic floodplain wetland pools of south‐eastern Australia. 2. We examined the relative abundance of Gambusia and Hypseleotris in regularly flooded and irregularly flooded pools to determine whether seasonal hydrological disturbance may be advantageous to the native species. We aimed to determine whether Gambusia and Hypseleotris populations respond differently to regular seasonal flooding and whether this could reduce the ability of Gambusia to dominate numerically the native species. We tested this by sampling fish bi‐monthly in 15 floodplain pools over 2.5 years. 3. We found that the relative abundance of the two species differed between regularly and irregularly flooded pools, while both pool types persisted (over a period of a year). Hypseleotris were numerically dominant in regularly flooded pools from spring through to autumn, following a major spring flood. In contrast, Gambusia were more abundant than Hypseleotris in irregularly flooded pools from summer until pools dried completely. 4. Due to the higher reproductive response of Hypseleotris to a spring flood, and the timing of its breeding season, we suggest that Hypseleotris may have a reproductive advantage over Gambusia during productive post‐flood spring/summer conditions. While the abundances of both species were usually within a similar range, variation in hydrologic habitats and the inter‐play between life‐history traits and hydrologic disturbance may nonetheless give the native fish an edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号