首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background and Aims

In flowering plants, microsporogenesis is accompanied by various types of cytoplasmic partitioning (cytokinesis). Patterns of male cytokinesis are suspected to play a role in the diversity of aperture patterns found in pollen grains of angiosperms. The relationships between intersporal wall formation, tetrad shape and pollen aperture pattern ontogeny are studied.

Methods

A comparative analysis of meiosis and aperture distribution was performed within tetrads in two triporate eudicot species with contrasting aperture arrangements within their tetrads [Epilobium roseum (Onagraceae) and Paranomus reflexus (Proteaceae)].

Key Results and Conclusions

Intersporal wall formation is a two-step process in both species. Cytokinesis is first achieved by the formation of naked centripetal cell plates. These naked cell plates are then covered by additional thick, localized callose deposits that differ in location between the two species. Apertures are finally formed in areas in which additional callose is deposited on the cell plates. The recorded variation in tetrad shape is correlated with variations in aperture pattern, demonstrating the role of cell partitioning in aperture pattern ontogeny.  相似文献   

2.

Background and Aims

Microsporogenesis leading to monosulcate pollen grains has already been described for a wide range of monocot species. However, a detailed study of additional callose deposition after the completion of the cleavage walls has been neglected so far. The study of additional callose deposition in monosulcate pollen grain has gained importance since a correlation between additional callose deposition and aperture location has recently been revealed.

Methods

Microsporogenesis is described for 30 species belonging to eight families of the monocots: Acoraceae, Amaryllidaceae, Alstroemeriaceae, Asparagaceae, Butomaceae, Commelinaceae, Liliaceae and Xanthorrhoeaceae.

Key Results

Five different microsporogenesis pathways are associated with monosulcate pollen grain. They differ in the type of cytokinesis, tetrad shape, and the presence and shape of additional callose deposition. Four of them present additional callose deposition.

Conclusions

In all these different microsporogenesis pathways, aperture location seems to be linked to the last point of callose deposition.  相似文献   

3.
Pollen grains are generally surrounded by an extremely resistant wall interrupted in places by apertures that play a key role in reproduction; pollen tube growth is initiated at these sites. The shift from a proximal to distal aperture location is a striking innovation in seed plant reproduction. Reversals to proximal aperture position have only very rarely been described in angiosperms. The genus Tillandsia belongs to the Bromeliaceae family, and its aperture pattern has been described as distal monosulcate, the most widespread aperture patterns recorded in monocots and basal angiosperms. Here we report developmental and functional elements to demonstrate that the sulcate aperture in Tillandsia leiboldiana is not distal as previously described but proximal. Postmeitotic tetrad observation indicates unambiguously the proximal position of the sulcus, and in vitro germination of pollen grains confirms that the aperture is functional. This is the first report of a sulcate proximal aperture with proximal germination. The observation of microsporogenesis reveals specific features in the patterns of callose thickenings in postmeiotic tetrads.  相似文献   

4.

Background and Aims

Microsporogenesis in monocots is often characterized by successive cytokinesis with centrifugal cell plate formation. Pollen grains in monocots are predominantly monosulcate, but variation occurs, including the lack of apertures. The aperture pattern can be determined by microsporogenesis features such as the tetrad shape and the last sites of callose deposition among the microspores. Potamogeton belongs to the early divergent Potamogetonaceae and possesses inaperturate pollen, a type of pollen for which it has been suggested that there is a release of the constraint on tetrad shape. This study aimed to investigate the microsporogenesis and the ultrastructure of pollen wall in species of Potamogeton in order to better understand the relationship between microsporogenesis features and the inaperturate condition.

Methods

The microsporogenesis was investigated using both light and epifluorescence microscopy. The ultrastructure of the pollen grain was studied using transmission electron microscopy.

Key Results

The cytokinesis is successive and formation of the intersporal callose wall is achieved by centrifugal cell plates, as a one-step process. The microspore tetrads were tetragonal, decussate, T-shaped and linear, except in P. pusillus, which showed less variation. This species also showed a callose ring in the microsporocyte, and some rhomboidal tetrads. In the mature pollen, the thickening observed in a broad area of the intine was here interpreted as an artefact.

Conclusions

The data support the view that there is a correlation between the inaperturate pollen production and the release of constraint on tetrad shape. However, in P. pusillus the tetrad shape may be constrained by a callose ring. It is also suggested that the lack of apertures in the pollen of Potamogeton may be due to the lack of specific sites on which callose deposition is completed. Moreover, inaperturate pollen of Potamogeton would be better classified as omniaperturate.Key words: Alismatales, callose, microsporogenesis, pollen aperture, Potamogeton illinoensis, P. polygonus, P. pusillus, tetrad shape  相似文献   

5.
The quartet (qrt) mutants of Arabidopsis thaliana produce tetrad pollen in which microspores fail to separate during pollen development. Because the amount of callose deposition between microspores is correlated with tetrad pollen formation in other species, and because pectin is implicated as playing a role in cell adhesion, these cell-wall components in wild-type and mutant anthers were visualized by immunofluorescence microscopy at different stages of microsporogenesis. In wild-type, callose was detected around the pollen mother cell at the onset of meiosis and around the microspores during the tetrad stage. Microspores were released into the anther locule at the stage where callose was no longer detected. Deposition and degradation of callose during tetrad pollen formation in qrt1 and qrt2 mutants were indistinguishable from those in wild-type. Enzymatic removal of callose from wild-type microspores at the tetrad stage did not release the microspores, suggesting that callose removal is not sufficient to disperse the microspores in wild-type. Pectic components were detected in the primary wall of the pollen mother cell. This wall surrounded the callosic wall around the pollen mother cell and the microspores during the tetrad stage. In wild-type, pectic components of this wall were no longer detectable at the time of microspore release. However, in qrt1 and qrt2 mutants, pectic components of this wall persisted after callose degradation. This result suggests that failure of pectin degradation in the pollen mother cell wall is associated with tetrad pollen formation in qrt mutants, and indicates that QRT1 and QRT2 may be required for cell type-specific pectin degradation to separate microspores.  相似文献   

6.
Pollen morphology has been extensively studied in the Arecaceae, and pollen aperture organization is usually distal monosulcate, as in many monocot families. Much is known about the influence of microsporogenesis on aperture configuration, but the key processes during microsporogenesis responsible for aperture type, number and arrangement are still poorly understood. In order to clarify the developmental sequence underlying aperture type and organization in palm monosulcate pollen, a study of the characteristics of male postmeiotic development was carried out in representative species of four genera of subfamily Coryphoideae, and four genera of subfamily Arecoideae. We found evidence for the occurrence of successive cytokinesis in addition to simultaneous cytokinesis in three Coryphoideae species. Tetrad shape was highly diverse within all species. Our results reveal an unexpected diversity in microsporogenesis from which it may be possible to gain further insight into pollen evolution within the family.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 151 , 93–102.  相似文献   

7.

Background and Aims

The pattern of callose deposition was followed in developing stomata of the fern Asplenium nidus to investigate the role of this polysaccharide in guard cell (GC) wall differentiation and stomatal pore formation.

Methods

Callose was localized by aniline blue staining and immunolabelling using an antibody against (1 → 3)-β-d-glucan. The study was carried out in stomata of untreated material as well as of material treated with: (1) 2-deoxy-d-glucose (2-DDG) or tunicamycin, which inhibit callose synthesis; (2) coumarin or 2,6-dichlorobenzonitrile (dichlobenil), which block cellulose synthesis; (3) cyclopiazonic acid (CPA), which disturbs cytoplasmic Ca2+ homeostasis; and (d) cytochalasin B or oryzalin, which disintegrate actin filaments and microtubules, respectively.

Results

In post-cytokinetic stomata significant amounts of callose persisted in the nascent ventral wall. Callose then began degrading from the mid-region of the ventral wall towards its periphery, a process which kept pace with the formation of an ‘internal stomatal pore’ by local separation of the partner plasmalemmata. In differentiating GCs, callose was consistently localized in the developing cell-wall thickenings. In 2-DDG-, tunicamycin- and CPA-affected stomata, callose deposition and internal stomatal pore formation were inhibited. The affected ventral walls and GC wall thickenings contained membranous elements. Stomata recovering from the above treatments formed a stomatal pore by a mechanism different from that in untreated stomata. After coumarin or dichlobenil treatment, callose was retained in the nascent ventral wall for longer than in control stomata, while internal stomatal pore formation was blocked. Actin filament disintegration inhibited internal stomatal pore formation, without any effect on callose deposition.

Conclusions

In A. nidus stomata the time and pattern of callose deposition and degradation play an essential role in internal stomatal pore formation, and callose participates in deposition of the local GC wall thickenings.  相似文献   

8.
Abstract: Callose, or β-1,3-glucan, is a plant cell wall polysaccharide that occurs endogenously at distinct sites in a variety of tissues. Callose is also formed in response to stress involving cell membrane perturbation. In sections of chemically-fixed nodule tissue of the actinorhizal host, Datisca glomerata, callose was cytochemically detected within the Frankia -infected cortical cells, as an extensive network of wall material surrounding the microsymbiont, but not in uninfected cortical cells. Callose formation was completely inhibited within the infected cells when 2-deoxy-D-glucose, an inhibitor of callose formation, was included in the tissue fixative. The study concludes that callose deposition in the Datisca nodule infected zone is apparently a stress response to tissue preparation and fixation. However, the rapidity and extent of callose deposition primarily at the symbiotic interface in Frankia -infected cells suggests an unusual predisposition to biosynthesis of β-1,3-glucan in the nodule cortical cells that is related to their interaction with the microsymbiont.  相似文献   

9.
Temporary accumulation of callose in suspension-cultured wheat (Triticum timopheevii Zhuk.) cells at the exponential growth phase was correlated with the mitotic index due to the formation of the cell plates in dividing cells. Callose disappeared in expanding cells owing to enhanced activities of endo- and exoglucanases. The exogluconase activity was reduced when the cells were treated with cycloheximide, an inhibitor of protein synthesis. A similar pattern was observed when elicitors experimentally enhanced callose synthesis. Apparently, in such cases, callose behaves as a temporary component repairing the cell wall. We presume that plant cells comprise a universal mechanism for regulating callose synthesis.  相似文献   

10.
The formation of cytomictic channels (CCs) during the tobacco microsporogenesis has been analyzed by microscopy and cytochemical methods. Starting from the pachytene stage, CCs were formed between microsporocytes with involvement of specific organelles, the so-called spherosome-like vesicles. The presence of the enzyme callase, able to degrade callose and form CCs in the cell wall of microsporocytes, has been demonstrated for the first time in the spherosome-like vesicles. An active form of callase was detectable in the spherosome-like vesicles and cell wall but not in the endoplasmic reticulum and Golgi apparatus. The release of callase from spherosome-like vesicles into the cell wall was described. Two ways in formation of the CCs in the tobacco microsporogenesis, the primary formation in the cell wall composed of pectins and cellulose (leptotene-zygotene) and secondary formation in the cell wall of callose (after the pachytene stage), were compared.  相似文献   

11.
The callosic wall which covers microsporocyte mother cells during meiotic division has been studied using different fluorochromes as alternatives to the widely used aniline blue. We have confirmed that both acridine orange and 4', 6' diamidino-2-phenylindole (DAPI) produce a fluorescent response to callose which is comparable in specificity and intensity to that of aniline blue: therefore, they can be used to study callose wall formation. Staining properties of these fluorochromes, as well of those of curcumin and sirofluor, reported earlier as fluorescent stains for callose, are discussed. We also discuss the efficacy of the combined use of sirofluor and DAPI to study particular aspects of the deposition of callose.  相似文献   

12.
The primary plant cell wall is laid down over a brief period of time during cytokinesis. Initially, a membrane network forms at the equator of a dividing cell. The cross-wall is then assembled and remodeled within this membrane compartment. Callose is the predominant luminal component of the nascent cross-wall or cell plate, but is not a component of intact mature cell walls, which are composed primarily of cellulose, pectins and xyloglucans. Widely accepted models postulate that callose comprises a transient, rapid spreading force for the expansion of membrane networks during cytokinesis. In this study, we clone and characterize an Arabidopsis gene, MASSUE / AtGSL8 , which encodes a putative callose synthase. massue mutants are seedling-lethal and have a striking cytokinesis-defective phenotype. Callose deposition was delayed in the cell plates of massue mutants. Mutant cells were occasionally bi- or multi-nucleate, with cell-wall stubs, and we frequently observed gaps at the junction between cross-walls and parental cell walls. The results suggest that the timely deposition of callose is essential for the completion of plant cytokinesis. Surprisingly, confocal analysis revealed that the cell-plate membrane compartment forms and expands, seemingly as far as the parental wall, prior to the appearance of callose. We discuss the possibility that callose may be required to establish a lasting connection between the nascent cross-wall and the parental cell wall.  相似文献   

13.
Strengthening of plant cell walls at the site of fungal entry is one of the earliest plant responses to fungal pathogens. The aim of our study was to characterize the pattern of callose synthase localization and callose deposition in roots of Pinus sylvestris after infection by species of the Heterobasidion annosum s.l. complex with different host specificity: H. annosum s.s., H. parviporum and H. abietinum. To address this, sense‐labelled probes and ribonuclease‐treated samples were used to determine in situ hybridizations of callose synthase by FISH method. Furthermore, determination of callose accumulation within P. sylvestris cells was carried out using aniline blue. The different species of H. annosum s.l. had distinct impacts on the callose synthase staining within plant tissues. Moreover, while inoculation with strains of H. abietinum resulted in callose synthase accumulation at the point of hyphae contact with the host cell, this was not observed with the other species. A significant difference in callose synthesis localization was observed after inoculation with varied species of H. annosum s.l. as a result of the specific interactions with the host.  相似文献   

14.
The pattern of callose deposition was studied in anthers and ovules of three meiotic mutants of Zea mays L. The synthesis of the callose wall in sporogenous cells was related to their transfer to meiotic division.  相似文献   

15.
Callose (beta-1,3-glucan) is produced at different locations in response to biotic and abiotic cues. Arabidopsis contains 12 genes encoding callose synthase (CalS). We demonstrate that one of these genes, CalS5, encodes a callose synthase which is responsible for the synthesis of callose deposited at the primary cell wall of meiocytes, tetrads and microspores, and the expression of this gene is essential for exine formation in pollen wall. CalS5 encodes a transmembrane protein of 1923 amino acid residues with a molecular mass of 220 kDa. Knockout mutations of the CalS5 gene by T-DNA insertion resulted in a severe reduction in fertility. The reduced fertility in the cals5 mutants is attributed to the degeneration of microspores. However, megagametogenesis is not affected and the female gametes are completely fertile in cals5 mutants. The CalS5 gene is also expressed in other organs with the highest expression in meiocytes, tetrads, microspores and mature pollen. Callose deposition in the cals5 mutant was nearly completely lacking, suggesting that this gene is essential for the synthesis of callose in these tissues. As a result, the pollen exine wall was not formed properly, affecting the baculae and tectum structure and tryphine was deposited randomly as globular structures. These data suggest that callose synthesis has a vital function in building a properly sculpted exine, the integrity of which is essential for pollen viability.  相似文献   

16.
17.
In somatic cell division, cytokinesis is the final step of the cell cycle and physically divides the mother cytoplasm into two daughter cells. In the meiotic cell division, however, pollen mother cells (PMCs) undergo two successive nuclear divisions without an intervening S-phase and consequently generate four haploid daughter nuclei out of one parental cell. In line with this, the physical separation of meiotic nuclei does not follow the conventional cytokinesis pathway, but instead is mediated by alternative processes, including polar-based phragmoplast outgrowth and RMA-mediated cell wall positioning. In this review, we outline the different cytological mechanisms of cell plate formation operating in different types of PMCs and additionally focus on some important features associated with male meiotic cytokinesis, including cytoskeletal dynamics and callose deposition. We also provide an up-to-date overview of the main molecular actors involved in PMC wall formation and additionally highlight some recent advances on the effect of cold stress on meiotic cytokinesis in plants.  相似文献   

18.
《Flora》2005,200(3):256-263
Leymus chinensis is an economically and ecologically important grass that exhibits low seed production. To better understand the causes of its low sexual reproductivity, the microsporogenesis and pollen development of this species were investigated, with emphasis on dynamic changes in callose deposition. A variety of histochemical stains were employed, including Heidenhain's hematoxylin, decolorized aniline blue, DAPI, and acetocarmine, along with a temporary mount method. Microsporogenesis and pollen development generally took place from June 12 to 26. The meiosis of microspore mother cells (MMCs) was of the successive type and the tetrad was isobilateral in shape. Mature pollen grains comprised two sperms and a vegetative nucleus. Callose initially appeared in the center of the anther locule at the premeiotic phase, and then gradually and unevenly deposited around the MMC before the commencement of meiosis. At the onset of meiosis, the accumulation of callose enclosing the MMC peaked, accompanied by the disappearance of callose in the center of the locule. At the dyad and tetrad stages, the dyads and tetrads were surrounded by callose wall and the microspores in the tetrads were isolated by a crossed cell plate composed of callose. Microspores just released from tetrads were still enclosed in callose wall, and then callose gradually disappeared in the pollen wall. Ultimately, callose almost completely disappeared from the walls of mature pollen grains. In the large numbers of sections observed, most of the cases of meiosis of the MMCs, pollen development, and callose dynamics were normal, with only a few abnormities observed. The results suggest that microsporogenesis, male gametogenesis, and callose dynamics during these processes are generally normal in this species, and that the callose wall plays an important role in the production of functional pollen grains. The small numbers of abnormities of these processes that occurred likely do not adversely affect the production of viable pollen grains. Therefore, microsporogenesis and pollen development may not be factors in the low seed production of L. chinensis.  相似文献   

19.
采用水培试验,研究了铝胁迫下两个胡枝子品种根尖产生胼胝质的变化规律及影响因素。结果表明,两个品种的根尖铝吸收量与胼胝质形成量呈正比例关系。品种间差异主要是在根尖0—0.5 cm处。敏感品种胼胝质形成量同铝吸收量的变化趋势相一致,而耐性品种则在铝处理6 h时出现一个高峰值后下降。去除铝胁迫后,耐性品种胼胝质形成量并不显著减少。与单独铝处理相比,阴离子通道抑制剂苯甲酰甲醛加铝处理对两个品种胼胝质形成无影响;尼氟灭酸加铝处理抑制敏感品种胼胝质的形成,对耐性品种无影响;蒽-9-羧酸加铝处理显著抑制两个品种的胼胝质形成。另外,抑制剂2-去氧-D-葡萄糖加铝共同处理与单独铝处理相比,敏感品种的胼胝质形成量显著降低,耐性品种无影响。甘露醇对两个品种胼胝质形成的影响无显著差别。镧处理下胼胝质的形成量是耐性品种显著高于敏感品种,铝、镧同时处理胼胝质的形成量最高。敏感品种胼胝质形成处理间无差别。总之,耐性品种在铝胁迫下胼胝质形成与有机酸分泌可能存在一定的协调关系;铝胁迫下胼胝质形成是敏感指标;在一定条件下,特别是有机酸分泌前胼胝质的形成可能具有一定抗性意义;铝诱导胼胝质的形成受多种外界因素(浓度、时间、有机酸分泌,渗透压等)的影响。  相似文献   

20.
Pollen aperture patterns vary widely in angiosperms. An increasing number of studies indicate that aperture pattern ontogeny is correlated with the way in which cytokinesis that follows male meiosis is completed. The formation of the intersporal callose walls that isolate the microspores after meiosis was studied in four species with different aperture patterns (two monocots, Phormium tenax and Asphodelus albus, and two eudicots, Helleborus foetidus and Protea lepidocarpodendron). The way in which post-meiotic cytokinesis is performed differs between all four species, and variation in callose deposition appears to be linked to aperture pattern definition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号