首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Displacement of native plant species by non‐indigenous congeners may affect associated faunal assemblages. In endangered salt marshes of south‐east Australia, the non‐indigenous rush Juncus acutus is currently displacing the native rush Juncus kraussii, which is a dominant habitat‐forming species along the upper border of coastal salt marshes. We sampled insect assemblages on multiple plants of these congeneric rushes in coastal salt marshes in Sydney, New South Wales, Australia, and compared the abundance, richness, diversity, composition and trophic structure between: (i) J. acutus and J. kraussii at invaded locations; and (ii) J. kraussii at locations either invaded or not invaded by J. acutus. Although J. acutus supported a diverse suite of insects, species richness and diversity were significantly greater on the native J. kraussii. Moreover, insect assemblages associated with J. kraussii at sites invaded by J. acutus were significantly different from, and more variable than, those on J. kraussii at non‐invaded sites. The trophic structure of the insect assemblages was also different, including the abundance and richness of predators and herbivores, suggesting that J. acutus may be altering consumer interactions, and may be spreading in part because of a reduction in herbivory. This strongly suggests that J. acutus is not playing a functionally similar role to J. kraussii with respect to the plant‐associated insect species assemblages. Consequently, at sites where this non‐indigenous species successfully displaces the native congener, this may have important ecological consequences for community composition and functioning of these endangered coastal salt marshes.  相似文献   

2.
Aim To produce an inventory of south‐west Atlantic saltmarshes (from latitude 31°48′ S to 43°20′ S) using remotely sensed images and field sampling; to quantify their total area; to describe the biogeographical variation of the main habitats characterized by dominant vascular plants, in relation to major environmental factors; to test the hypothesis of predominance of the reversal pattern in plant distribution (sedges and grasses dominate the lower, regularly inundated zones, while the upper zones are occupied by more halophytic species) previously described; and to compare these south‐west Atlantic saltmarshes with others world‐wide. Location South‐western Atlantic saltmarshes Methods Field samples of dominant emergent plant species positioned by the global positioning system (GPS) were obtained from most coastal saltmarshes (14) between southern Brazil and northern Patagonia, Argentina. Landsat satellite images were obtained and coastal saltmarsh habitats were quantified by supervised classification, utilizing points gathered in the field. Results Three main plant species dominated the low and middle intertidal saltmarsh, Spartina alterniflora Loesel., Spartina densiflora Brong. and Sarcocornia perennis (P. Mill.) A.J. Scott. The total area of the studied coastal saltmarshes was 2133 km2, comprising 380 km2 of Sp. alterniflora marsh, 366 km2 of Sp. densiflora marsh, 746 km2 of Sar. perennis marsh and 641 km2 of brackish marsh (dominated by Juncus acutus L., Juncus kraussii Hochst., Scirpus maritimus L., Scirpus americanus Pers. and Phragmites australis (Cav.) Trin.). Cluster analysis showed three habitat types: saltmarshes dominated by (1) Sp. densiflora and brackish species,(2) Sp. alterniflora and Sar. perennis and (3) Sp.densiflora only. The analysis of abiotic variables showed significant differences between groups of habitats and coordinated gradients of the abiotic variables. The south‐west Atlantic coast showed decreasing mean annual rainfall (1200 to 196 mm) and increasing mean tidal amplitude (< 0.5 to > 2.5 m) from latitude 31° to 43°. Main conclusions South‐west Atlantic saltmarshes are globally important by virtue of their total extent. Remote sensing showed that the reversal pattern in plant distribution is not widespread. Indeed, south‐west Atlantic saltmarshes are better characterized by the presence of the halophytic genera Spartina and Sarcocornia. Our results support the interpretation that south‐west Atlantic saltmarshes constitute a class of temperate type (sensu Adam, 1990 ) with transitional characteristics between Australasian–South African saltmarshes and west Atlantic saltmarshes.  相似文献   

3.
Tropical rainforest canopies are renowned for their high invertebrate diversity and abundance. The canopy comprises a range of microhabitats representing very different food resources (including photosynthetic, reproductive, and structural tissues). As these resources vary considerably in temporal and spatial availability, nutritional quality, chemical protection and other attributes, we hypothesized that microhabitats support structurally different invertebrate communities. To test this we used the Australian Canopy Crane to sample invertebrates from mature leaves, flush leaves, flowers, fruit and suspended dead wood from 23 plant species. Invertebrate faunas on different microhabitats varied in taxonomic composition and feeding guild structure in support of the microhabitat differentiation hypothesis. Herbivores were found predominantly on new leaves (Hemiptera, Lepidoptera) and especially flowers (Coleoptera, Thysanoptera), but were relatively uncommon on mature leaves. Instead, the mature foliage community was dominated by predators, especially spiders and ants, and supported high abundances of saprophages. Ripe fruit and dead wood were scarce canopy resources that were utilized by a relatively small number of invertebrates, mostly saprophages and fungivores. Flowers supported a more heterogeneous fauna than the leaves in terms of proportional abundances of taxonomic groups and feeding guilds, both within tree species (evenness) and between tree species (non‐uniformity). These results demonstrate microhabitat differentiation in a rainforest canopy and are the first to quantify differences in taxonomic composition, guild structure and abundance patterns between such diverse invertebrate assemblages within host trees. We conclude that studies based only on sampling one microhabitat, and leaves in particular, may provide a distorted picture of invertebrate community structure.  相似文献   

4.
Microhabitat use in a mediterranean riverine fish assemblage   总被引:2,自引:0,他引:2  
Summary We examined microhabitat use in Barbus graellsii, Barbus haasi, Chondrostoma toxostoma, Rutilus arcasii, and Salmo gairdneri over a 19 month period in the upper Rio Matarraña, Spain. B. graellsii and Ch. toxostoma exhibited non-random microhabitat use during all seasons and preferentially occupied deep microhabitats with heterogeneous substrates. During the majority of seasons in which they were present, B. haasi and R. arcasii occurred in microhabitats similar to those occupied by B. graellsii and Ch. toxostoma. S. gairdneri was over-represented in high velocity microhabitats with erosional substrates. We did not observe any evidence of interspecific interference competition or avoidance. Substrate composition did not appear to affect microhabitat use outside of its covariation with depth and velocity. Seaonal variation in microhabitat use by B. graellsii, B. haasi and Ch. toxostoma was strongly correlated with seasonal changes in microhabitat availability. S. gairdneri, however, occurred closer to the substrate when average velocities were high. Larger B. graellsii and B. haasi sometimes occupied deeper, higher velocity microhabitats than did smaller specimens. Larger B. graellsii also occasionally occurred farther from shelter than did smaller specimens; the reverse was true for B. haasi. Larger Ch. toxostoma sometimes were found farther from both the substrate and shelter than smaller individuals, whereas smaller specimens occasionally inhabited deeper areas with more depositional substrates than did larger Ch. toxostoma. During Late Summer 1985, smaller Ch. toxostoma also occupied microhabitats with higher velocities than did larger specimens. A comparison of microhabitat use for two species present in both upper and lower portions of the Matarraña indicated that most differences in microhabitat use could be attributed to inter-site differences in microhabitat availability. The data suggest, hovever, that both species shifted to more protected microhabitats in the higher velocity site. Assemblage members generally occupied statistically distinguishable microhabitats and could be classified as: 1) high-velocity upper water column (S. gairdneri), 2) low velocity lower water column (B. graellsii, Ch. toxostoma and R. arcasii), and 3) shelter-oriented benthic (B. haasi). The introduction of S. gairdneri during Winter 1984 did not produce microhabitat shifts in any of the native species. Whether or not the native species affected microhabitat use in S. gairdneri is unknown. Interspecific competition for space, however, did not appear to strongly influence microhabitat use among the native species.  相似文献   

5.
Facilitation (positive inter-specific interaction) plays an important role in promoting succession in harsh environments. To examine whether tussocks facilitate the establishment of other species, after peat mining, investigations were carried out in a formerly Sphagnum-dominated wetland (Sarobetsu mire, northern Japan). Two tussock-forming species, Carex middendorffii and Eriophorum vaginatum, have established in sparsely vegetated areas, with a dry ground surface, since peat extraction ended. The following factors were examined, in three microhabitats created by tussocks (center = raised tussock center, edge = tussock edge covered with litter, and flat = flat areas without tussocks): (1) relationships between tussock microhabitats and plant distributions, and (2) the effects of tussocks on survival, growth, flowering and seed immigration of common species. Two (1 × 10 m) plots were established, in each of three sparsely vegetated sites, in September 2005. Tussocks were mapped in each plot, and species, location, flowering, growth stage (seedling, juvenile and fertile) and size of all plants were recorded, during snow-free periods from September 2005 to September 2006. Seed traps were used to investigate seed dispersal from June to October 2006. Four native species, Drosera rotundifolia, Lobelia sessilifolia, Moliniopsis japonica, Solidago virgaurea, and an exotic species, Hypochaeris radicata, were most common. During seedling and juvenile stages, these species were distributed more densely at the tussock edge than in the flat areas, but were less common at the center. H. radicata had a higher survival rate at the edge than in the flat during the winter. The annual growth of H. radicata, L. sessilifolia and S. virgaurea was higher at the edge. Seed traps detected that D. rotundifolia seeds accumulate more at the edge. In conclusion, tussocks facilitated plant establishment in the edge microhabitat by providing litter cover, enhancing seed accumulation, germination and survival, and thus promoted revegetation. However, Sphagnum mosses have not established in the study sites, and the vegetation differs strongly from the areas where no peat mining had taken place.  相似文献   

6.
7.
In this study, we explored the composition and assemblage structure of aquatic Heteroptera from 15 sampling sites along the Phong River, Thailand, during the rainy (July 2011), cool (December 2011) and hot (March–April 2012) seasons. A total of 8399 individuals, belonging to 54 species and 12 families of aquatic Heteroptera were recorded. The Kruskal–Wallis test indicated significant difference in total number of species and total number of individuals of aquatic Heteroptera among microhabitat types (P < 0.05). Stepwise multiple regression and canonical correspondence analysis (CCA) ordination show that characteristics of microhabitats including percentage of gravel, percentage of aquatic macrophytes covering the water surface and percentage of shading from riparian vegetation determine aquatic Heteroptera assemblage structures. From this study, microhabitats have more effect on aquatic Heteroptera than water pollution.  相似文献   

8.
The enemy release hypothesis posits that non‐native plant species may gain a competitive advantage over their native counterparts because they are liberated from co‐evolved natural enemies from their native area. The phylogenetic relationship between a non‐native plant and the native community may be important for understanding the success of some non‐native plants, because host switching by insect herbivores is more likely to occur between closely related species. We tested the enemy release hypothesis by comparing leaf damage and herbivorous insect assemblages on the invasive species Senecio madagascariensis Poir. to that on nine congeneric species, of which five are native to the study area, and four are non‐native but considered non‐invasive. Non‐native species had less leaf damage than natives overall, but we found no significant differences in the abundance, richness and Shannon diversity of herbivores between native and non‐native Senecio L. species. The herbivore assemblage and percentage abundance of herbivore guilds differed among all Senecio species, but patterns were not related to whether the species was native or not. Species‐level differences indicate that S. madagascariensis may have a greater proportion of generalist insect damage (represented by phytophagous leaf chewers) than the other Senecio species. Within a plant genus, escape from natural enemies may not be a sufficient explanation for why some non‐native species become more invasive than others.  相似文献   

9.
Abstract Grasslands are often considered as two‐dimensional habitats rather than complex, multilayered habitats. However, native grasslands are complex habitats, with multiple layers of annual and perennial grasses, sedges, shrubs and mosses. Vegetation complexity, including plant type, quality and three‐dimensional structure is important for providing a variety of food and habitat resources for insects. Grazing by domestic livestock can affect these processes through the loss or fragmentation of habitats, as well as altering the vertical and horizontal vegetation structure. This study aimed to investigate the role of host plants and microhabitat architecture for determining foliage invertebrate assemblages. Different plant species supported distinct invertebrate assemblages and less complex host plants supported fewer invertebrate individuals and species. Manipulations of plant architecture changed the species composition of invertebrates, with most species found in more complex vegetation. This study illustrates the importance of host diversity and pasture complexity for invertebrate communities. Management practices that encourage a heterogeneous environment with diverse and structurally complex pastures should also sustain a more diverse and functional invertebrate assemblage.  相似文献   

10.
11.
Knowledge about the spatial and temporal scales of both habitat use and the functional significance of different adaptations is essential for an understanding of the population dynamics of invertebrate assemblages. This fundamental knowledge is not only interesting from an academic point of view, but is sorely lacking and needed in the field of restoration ecology. Many species are threatened due to degradation. Knowing what environmental conditions are needed dtLring the life cycle of these species is important in the design of restoration measures which aim to lift existing bottlenecks for threatened species. To assess the relative importance of water type and microhabitat in structuring the invertebrate assemblage during different seasons, invertebrates were sampled in three water bodies differing in trophic level and acidity. Different parts within a water body (microhabitats) were sampled separately and each water body was sampled in all four seasons. Results show that water body is an important factor structuring the invertebrate assemblage early in the season, whereas microhabitat became more important later in the season. Structural complexity of microhabitats was related to the type of locomotion employed by invertebrates. Seasonal differences could be related to population dynamics (reproduction, mortality). Moreover, fluctuations in resource availability were expected to differ between the water bodies, with highest fluctuations in the eutrophic water body and with fluctuations becoming less predictable later in the season. This was confirmed by the data: species synchronization to pulses in food availability was strongest in the eutrophic water body. Moreover, synchronization was strongest in summer, while in autumn waters were invaded by dispersive species. Based on these results a synthesis is presented on the functioning of the different waters during the different seasons.  相似文献   

12.
Abstract 1. The present study used the mountain specialist butterfly Parnassius apollo as a model system to investigate how climate change may alter habitat requirements for species at their warm range margins. 2. Larval habitat use was recorded in six P. apollo populations over a 700 m elevation gradient in the Sierra de Guadarrama (central Spain). Larvae used four potential host species (Sedum spp.) growing in open areas amongst shrubs. 3. Parnassius apollo host‐plant and habitat use changed as elevation increased: the primary host shifted from Sedum amplexicaule to Sedum brevifolium, and larvae selected more open microhabitats (increased bare ground and dead vegetation, reduced vegetation height and shrub cover), suggesting that hotter microhabitats are used in cooler environments. 4. Larval microhabitat selection was significantly related to ambient temperature. At temperatures lower than 27 °C, larvae occupied open microhabitats that were warmer than ambient temperature, versus more shaded microhabitats that were cooler than ambient conditions when temperature was higher than 27 °C. 5. Elevational changes in phenology influenced the temperatures experienced by larvae, and could affect local host‐plant favourability. 6. Habitat heterogeneity appears to play an important role in P. apollo larval thermoregulation, and may become increasingly important in buffering populations of this and other insect species against climatic variation.  相似文献   

13.
Preventing the establishment of a non-native species is critical for ensuring the species does not become invasive, yet most non-native species will have little impact on their environment. Despite this, little is known about what influences whether a species will remain relatively benign, or whether it will cause economic or ecological harm. Understanding a plant’s microhabitat provides insight into the necessary conditions for establishment and the current distribution limitations of a population. We investigated microhabitat preference of the non-native natal grass (Melinis repens (Willd.) Zizka) in Florida scrub using microhabitat sampling to measure vegetation composition. We examined the extent to which microhabitats were associated with natal grass presence and biomass in invaded disturbed scrub and roadside plots using backwards stepwise logistic regression and general linear models to identify significant microhabitat variables. We further compared these plots with those in undisturbed, uninvaded scrub to characterize vegetation across habitat types, and used our model to predict the probability of natal grass invasion in undisturbed scrub. Natal grass preferred microhabitats with high litter volume and distance to shrubs and intermediate cactus, graminoid, and vine cover. Roadside natal grass achieved higher biomass and was less microhabitat limited than disturbed scrub natal grass. We determined that undisturbed scrub plots represent distinct microhabitats that natal grass is unlikely to invade. Microhabitat sampling provides land-managers a non-intrusive technique to assess potential habitat suitability based non-native plant preferences before a costly invasion occurs.  相似文献   

14.
Questions: What is the relative influence of size, connectivity and disturbance history on plant species richness and assemblages of fragmented grasslands? What is the contribution of small fragments to the conservation of native species pool of the region? Location: Tandilia's Range, Southern Pampa, Argentina. Methods: Cover of plants was registered within 24 fragments of tall‐tussock grassland remnants within an agricultural landscape using modified Whittaker nested sampling. We analysed the influence of site variables related to disturbance history (canopy height, litter thickness) and fragment variables (size, connectivity) on species richness (asymptotic species richness, slope of the species–area curve) as well as on species assemblages by multiple regressions analysis and canonical correspondence analyses, respectively. Cumulative area was used for analysing whether small fragments or large fragments are more important to species diversity in the landscape. Results: Asymptotic species richness was significantly influenced by site variables, in particular by Paspalum quadrifarium's canopy height, but not by fragment variables. Species assemblages were also affected by site variables (12.2% of total variation), but no additional portion of the species assemblage variability was significantly explained by fragment size and connectivity. Sampling of several small fragments rendered more exotic and native species than sampling of few large fragments of the same total area. Conclusions: Our results agree with previous studies reporting low sensitivity of species diversity to size and isolation of grassland fragments in fragmented landscapes and high sensitivity of species diversity to local variables. The higher capture of regional native species pool by small grassland fragments than by few larger ones of equivalent accumulated area highlights the value of small fragments for conservation.  相似文献   

15.
We used direct observation via snorkeling surveys to quantify microhabitat use by native brook (Salvelinus fontinalis) and non‐native brown (Salmo trutta) and rainbow (Onchorynchus mykiss) trout occupying natural and restored pool habitats within a large, high‐elevation Appalachian river, United States. Permutational multivariate analysis of variance (PERMANOVA) and subsequent two‐way analysis of variance (ANOVA) indicated a significant difference in microhabitat use by brook and non‐native trout within restored pools. We also detected a significant difference in microhabitat use by brook trout occupying pools in allopatry versus those occupying pools in sympatry with non‐native trout—a pattern that appears to be modulated by size. Smaller brook trout often occupied pools in the absence of non‐native species, where they used shallower and faster focal habitats. Larger brook trout occupied pools with, and utilized similar focal habitats (i.e. deeper, slower velocity) as, non‐native trout. Non‐native trout consistently occupied more thermally suitable microhabitats closer to cover as compared to brook trout, including the use of thermal refugia (i.e. ambient–focal temperature >2°C). These results suggest that non‐native trout influence brook trout use of restored habitats by: (1) displacing smaller brook trout from restored pools, and (2) displacing small and large brook trout from optimal microhabitats (cooler, deeper, and lower velocity). Consequently, benefits of habitat restoration in large rivers may only be fully realized by brook trout in the absence of non‐native species. Future research within this and other large river systems should characterize brook trout response to stream restoration following removal of non‐native species.  相似文献   

16.
Summary Among some species of Sonoran Desert rodents microhabitat differences are density dependent. I studied the differences in microhabitat use among four species of heteromyid rodents (Dipodomys merriami, Perognathus amplus, P. baileyi, and P. penicillatus) at low and at high population densities. Microhabitats are defined by the abundance and size distribution of desert shrubs. During a period of low population density the rodent species showed substantial microhabitat differentiation. Following a large increase in pocket mouse (Perognathus spp.) numbers differences in microhabitat use between species disappeared. The lack of microhabitat differentiation at high density is due to microhabitat shifts rather than an expansion in the number of microhabitats used. The shifts lead to increased similarity among species in microhabitat use. Microhabitat overlap is not constant but it is highly variable and sensitive to changes in rodent abundance.  相似文献   

17.
Conventional and biological control of a native moth, Dalaca pallens (Blanchard) (Lepidoptera: Hepialidae), were evaluated in Southern Chile in relation to changes on community metrics (diversity, species richness, evenness and dominance) of a soil-dwelling invertebrate assemblage. Two experiments were conducted (in winter and spring) to compare non-target effects of Beauveria bassiana (Balsamo) Vuillemin and lambda-cyhalothrin insecticide. The invertebrate community was sampled before and after spraying by extracting soil cores. Estimates of diversity (Shannon index), species richness, evenness (Hurlbert’s Probability of Interspecific Encounter) and dominance indicated that the invertebrate assemblage was strongly disturbed by lambda-cyhalothrin treatment but not by B. bassiana applied in winter, over the sampling period (40 days). Spring results revealed that diversity and evenness at control and at B. bassiana plots were similar between them and higher than at lambda-cyhalothrin plots, while there were no differences between sites 30 days after treatment in species richness. Inundative biological control using B. bassiana strain QU-B931 was considered to pose lower ecological risk than lambda-cyhalothrin, currently one of the most frequently used insecticides for D. pallens control.  相似文献   

18.
During a study of microhabitat use by gilt darters (Percina evides), we compared two methods for quantifying microhabitat availability in a southern Appalachian stream (USA). The first method used stratified random sampling throughout the site and the second involved taking constrained random measurements within a 2-m radius of the focal fish. Darters were generally over-represented in microhabitats with higher average velocities, greater amounts of erosional substrata, and lower amounts of depositional and large substrata. The two methods generally yielded similar patterns of microhabitat use. Nonetheless, of the seven microhabitat categories in which differential microhabitat use occurred in summer, four were present in both data sets, but three differed between methods. We observed no differences between methods for autumn data. Finally, the standard deviations of the summer-stratified random data set were significantly greater (sign test, P < 0.05) than those of the constrained data set. Our results suggest that either method for quantifying microhabitat availability can be used to quantify the general habitat use patterns of this species, but constrained analyses yielded a more restricted view of the total habitat available. Nonetheless, if the fishes range over a site, clearly stratified habitat availability analysis is preferred. Handling editor: J. A. Cambray  相似文献   

19.
Ecosystem level processes and species interactions have become important concepts in conservation and land management. Despite being New Zealand’s greatest contributors to global diversity, native invertebrates have been largely overlooked in the assessment of land values, and their diversity has often been assumed to reflect native plant diversity without justification. Invertebrates can in fact affect plant species composition, and in ecosystems such as New Zealand’s remaining indigenous and semi-modified tussock grasslands can do so in excess of more conspicuous vertebrate grazers. An understanding of the interactions between invertebrates and their plant hosts may be informative in assessing land conservation values, increase the efficiency of rapid inventory analyses and would be applicable across the production-conservation spectrum. This study considers the Curculionoidea, vascular plant, bryophyte and lichen communities of two semi-modified tussock grasslands in the Otago region of southern New Zealand. Quantitative plant and invertebrate sampling were carried out in January 2001. Data were analysed using ANalysis Of SIMilarity (ANOSIM) and Multi-Dimensional Scaling (MDS) ordination techniques. Vascular plant, bryophyte and lichen species richness was highest in the same site and plots as native weevil species richness, however the proportion of native vegetation in these locations was lower. Associations identified between Curculionoidea and vascular plants were dismissed due to the confounding effect of species frequency across samples. This appeared to have little influence on associations with bryophytes and/or lichens and these were given more weighting. The ecological implications of associations are considered and variability in weevil composition is discussed in reference to the tussock grassland environment. The importance of plant–invertebrate relationships to conservation and the uses and limitations of the PRIMER MDS ordination technique for determining associations are discussed.  相似文献   

20.
The microhabitat in which plants grow affects the outcome of their interactions with animals, particularly non-specialist consumers. Nevertheless, as most research on this topic has dealt with either mutualists or antagonists, little is known about the indirect effects of plant microhabitats on the outcome of tripartite interactions involving plants and both mutualists (e.g. seed dispersers) and antagonists (e.g. granivores). During three consecutive years, we analysed small-scale variations in the interaction of a perennial myrmecochore, Helleborus foetidus, with its seed dispersers and consumers as a function of the intensity of plant cover. Most seeds were released during the day and were rapidly removed by ants. Nevertheless, the proportion of ant-removed seeds was higher for plants located in open microhabitats than for plants surrounded by dense vegetation and rocky cover. Ant sampling revealed that seed removers were equally abundant, irrespective of the level of cover. By contrast, a few tiny ant species that feed on the reward without transporting the seeds were more abundant in highly covered microhabitats, irrespective of hellebore diaspore availability. These “cheaters” decrease the chance of removal by removers and increase the probability of seeds remaining on the ground until night, when granivore mice Apodemus sylvaticus become active. Mice also preferred foraging in covered microhabitats, where they consumed a larger proportion of seeds. Therefore, the density of cover indirectly increased seed predation risk by attracting more seed predators and cheater ants that contribute to increase seed availability for seed predators. Our results emphasize the importance of considering the indirect effects of plant microhabitat on their dispersal success. They highlight the indirect effect of cheaters that are likely to interfere in mutualisms and may lead to their collapse unless external factors such as spatio-temporal heterogeneity in seed availability constrain their effect. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号