首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Behavioural robustness at antibody and immune network level is discussed. The robustness of the immune response that drives an autonomous mobile robot is examined with two computational experiments in the autonomous mobile robots trajectory generation context in unknown environments. The immune response is met based on the immune network metaphor for different low-level behaviours coordination. These behaviours are activated when a robot sense the appropriate conditions in the environment in relation to the network current state. Results are obtained over a case study in computer simulation as well as in laboratory experiments with a Khepera II microrobot. In this work, we develop a set of tests where such an immune response is externally perturbed at network or low-level behavioural modules to analyse the robust capacity of the system to unexpected perturbations. Emergence of robust behaviour and high-level immune response relates to the coupling between behavioural modules that are selectively engaged with the environment based on immune response. Experimental evidence leads discussions on a dynamical systems perspective of behavioural robustness in artificial immune systems that goes beyond the isolated immune network response.  相似文献   

2.
Consistent between‐individual differences in movement are widely recognised across taxa. In addition, foraging plasticity at the within‐individual level suggests a behavioural dependency on the internal energy demand. Because behaviour co‐varies with fast‐slow life history (LH) strategies in an adaptive context, as theoretically predicted by the pace‐of‐life syndrome hypothesis, mass/energy fluxes should link behaviour and its plasticity with physiology at both between‐ and within‐individual levels. However, a mechanistic framework driving these links in a fluctuating ecological context is lacking. Focusing on home range behaviour, we propose a novel behavioural‐bioenergetics theoretical model to address such complexities at the individual level based on energy balance. We propose explicit mechanistic links between behaviour, physiology/metabolism and LH by merging two well‐founded theories, the movement ecology paradigm and the dynamic energetic budget theory. Overall, our behavioural‐bioenergetics model integrates the mechanisms explaining how (1) behavioural between‐ and within‐individual variabilities connect with internal state variable dynamics, (2) physiology and behaviour are explicitly interconnected by mass/energy fluxes, and (3) different LHs may arise from both behavioural and physiological variabilities in a given ecological context. Our novel theoretical model reveals encouraging opportunities for empiricists and theoreticians to delve into the eco‐evolutionary processes that favour or hinder the development of between‐individual differences in behaviour and the evolution of personality‐dependent movement syndromes.  相似文献   

3.
1. The food plant quality influences feeding preferences and various life history traits of herbivorous insects. However, the effects of different host plant qualities on the behavioural phenotype have rarely been studied in behavioural ecology, especially in a pest‐crop‐framework. 2. Behavioural phenotypes of insects may not only be affected by external environmental factors, such as the host plant quality but are also shaped by internal factors, such as the sex and the age of individuals. 3. To study host plant effects on behavioural phenotypes, we reared mustard leaf beetles (Phaedon cochleariae Fabricius) either on their natural host watercress or on the crop cabbage, on which this beetle can be a pest. The behavioural phenotype was characterised twice in the adult lifetime by measuring six behavioural traits tested in distinct contexts. 4. Depending on the context, different behavioural traits were specifically affected by the host plant, the sex and/or the age. Beetles fed on cabbage became more active with age. Furthermore, the boldness tested in an unprotected environment context was influenced by the host, with beetles fed on cabbage being bolder, whereas the boldness in a hiding or predator attack context was affected by the age and/or the interaction of host plant × sex. 5. In conclusion, beetles fed on the crop cabbage develop a different behavioural phenotype compared to beetles fed on watercress. Previous results showed that beetles reared on cabbage have a higher reproductive output. Thus, beetles fed on the crop potentially express a faster pace‐of‐life.  相似文献   

4.
In this article, an approach to measure fitness is proposed that considers fitness as a measure of competitive ability among phenotypes or genotypes. This approach is based on pairwise competition tests and is related to measures of “utility” in mathematical economics. Extending the results from utility theory it is possible to recover the classical Wrightian fitness measure without reference to models of population growth. A condition, quasi‐BTL, similar to the Bradley–Terry–Luce condition of classical utility theory is shown to be necessary for the existence of frequency and context‐independent fitness measures. Testing for violations of this quasi‐BTL condition can be used to the detect genotype‐by‐genotype interactions and frequency‐dependent fitness. A method for the detection of genotype by environment interactions is proposed that avoids potential scaling artifacts. Furthermore the measurement theoretical approach allows one to derive Wright's selection equation. This shows that classical selection equations are entirely general and exact. It is concluded that measurement theory is able to give definite answers to a number theoretical and practical questions. For instance, this theory identifies the correct scale for measuring gene interaction with respect to fitness and shows that different scales may lead to wrong conclusions.  相似文献   

5.
The emergence of a unified cognitive behaviour relies on the coordination of specialized components that distribute across a ‘brain’, body and environment. Although a general dynamical mechanism involved in agent-environment integration is still largely unknown for behavioural robustness, discussions here are focussed on one of the most plausible candidate: the formation of distributed mechanisms working in transient during agent-environment coupling. This article provides discussions on this sort of coordination based on a mobile object-tracking task with situated, embodied and minimal agents, and tests for robust yet adaptive behaviour. The proposed scenario provides examples of behavioural mechanisms that counterbalance the functional organization of internal control activity and agents’ situatedness to enable the evolution of a two-agent interaction task. Discussions in this article suggest that future studies of distributed cognition should take into account that there are at least two possible modes of interpreting distributed mechanisms and that these have a qualitatively different effect on behavioural robustness.  相似文献   

6.
Inbreeding depression is defined as a fitness decline in progeny resulting from mating between related individuals, the severity of which may vary across environmental conditions. Such inbreeding‐by‐environment interactions might reflect that inbred individuals have a lower capacity for adjusting their phenotype to match different environmental conditions better, as shown in prior studies on developmental plasticity. Behavioural plasticity is more flexible than developmental plasticity because it is reversible and relatively quick, but little is known about its sensitivity to inbreeding. Here, we investigate effects of inbreeding on behavioural plasticity in the context of parent–offspring interactions in the burying beetle Nicrophorus vespilloides. Larvae increase begging with the level of hunger, and parents increase their level of care when brood sizes increase. Here, we find that inbreeding increased behavioural plasticity in larvae: inbred larvae reduced their time spent associating with a parent in response to the length of food deprivation more than outbred larvae. However, inbreeding had no effect on the behavioural plasticity of offspring begging or any parental behaviour. Overall, our results show that inbreeding can increase behavioural plasticity. We suggest that inbreeding‐by‐environment interactions might arise when inbreeding is associated with too little or too much plasticity in response to changing environmental conditions.  相似文献   

7.
Human‐altered environmental conditions affect many species at the global scale. An extreme form of anthropogenic alteration is the existence and rapid increase of urban areas. A key question, then, is how species cope with urbanization. It has been suggested that rural and urban conspecifics show differences in behaviour and personality. However, (i) a generalization of this phenomenon has never been made; and (ii) it is still unclear whether differences in personality traits between rural and urban conspecifics are the result of phenotypic plasticity or of intrinsic differences. In a literature review, we show that behavioural differences between rural and urban conspecifics are common and taxonomically widespread among animals, suggesting a significant ecological impact of urbanization on animal behaviour. In order to gain insight into the mechanisms leading to behavioural differences in urban individuals, we hand‐raised and kept European blackbirds (Turdus merula) from a rural and a nearby urban area under common‐garden conditions. Using these birds, we investigated individual variation in two behavioural responses to the presence of novel objects: approach to an object in a familiar area (here defined as neophilia), and avoidance of an object in a familiar foraging context (defined as neophobia). Neophilic and neophobic behaviours were mildly correlated and repeatable even across a time period of one year, indicating stable individual behavioural strategies. Blackbirds from the urban population were more neophobic and seasonally less neophilic than blackbirds from the nearby rural area. These intrinsic differences in personality traits are likely the result of microevolutionary changes, although we cannot fully exclude early developmental influences.  相似文献   

8.
Within the same population, individuals often differ in how they respond to changes in their environment. A recent series of models predicts that competition in a heterogeneous environment might promote between‐individual variation in behavioural plasticity. We tested groups of sticklebacks in patchy foraging environments that differed in the level of competition. We also tested the same individuals across two different social groups and while alone to determine the social environment's influence on behavioural plasticity. In support of model predictions, individuals consistently differed in behavioural plasticity when the presence of conspecifics influenced the potential payoffs of a foraging opportunity. Whether individuals maintained their level of behavioural plasticity when placed in a new social group depended on the environmental heterogeneity. By explicitly testing predictions of recent theoretical models, we provide evidence for the types of ecological conditions under which we would expect, and not expect, variation in behavioural plasticity to be favoured.  相似文献   

9.
Recent studies have highlighted the role of coupled side‐chain fluctuations alone in the allosteric behavior of proteins. Moreover, examination of X‐ray crystallography data has recently revealed new information about the prevalence of alternate side‐chain conformations (conformational polymorphism), and attempts have been made to uncover the hidden alternate conformations from X‐ray data. Hence, new computational approaches are required that consider the polymorphic nature of the side chains, and incorporate the effects of this phenomenon in the study of information transmission and functional interactions of residues in a molecule. These studies can provide a more accurate understanding of the allosteric behavior. In this article, we first present a novel approach to generate an ensemble of conformations and an efficient computational method to extract direct couplings of side chains in allosteric proteins, and provide sparse network representations of the couplings. We take the side‐chain conformational polymorphism into account, and show that by studying the intrinsic dynamics of an inactive structure, we are able to construct a network of functionally crucial residues. Second, we show that the proposed method is capable of providing a magnified view of the coupled and conformationally polymorphic residues. This model reveals couplings between the alternate conformations of a coupled residue pair. To the best of our knowledge, this is the first computational method for extracting networks of side chains' alternate conformations. Such networks help in providing a detailed image of side‐chain dynamics in functionally important and conformationally polymorphic sites, such as binding and/or allosteric sites. Proteins 2015; 83:497–516. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Animals can adjust their behaviours depending on ecological context (i.e., behavioural plasticity), and an individual's response to a given context may also vary from occasion to occasion (intra‐individual variability). Recognizing the roles of both behavioural plasticity and intra‐individual variability is important in understanding how behavioural diversity is maintained within populations. However, how the ecological context itself influences the individual behavioural response and intra‐individual variability (e.g., how variable an individual is in their behavioural expression) remains largely unexplored. Here, we examine boldness expression (the duration of startle response) in a specialised spider‐eating jumping spider, Portia labiata, across three contexts following a mild disturbance: presence of a conspecific intruder (most dangerous), environmental change but no conspecific intruder, and no conspecific intruder or environmental change (safest). We found that context does not significantly influence the average boldness expression at the population level. However, each individual responded to each context differently, and the repeatability of boldness expression—the proportion of behavioural variation attributable to the between ‐individual level—is context‐dependent. We also found that in the presence of a conspecific intruder, spiders behave less predictably than in the environmental change context, but not differently from the safest context. These findings may suggest that the presence of conspecifics influences behavioural consistency in individuals, but that this may occur without influencing the population average behaviour.  相似文献   

11.
Canalization involves mutational robustness, the lack of phenotypic change as a result of genetic mutations. Given the large divergence in phenotype across species, understanding the relationship between high robustness and evolvability has been of interest to both theorists and experimentalists. Although canalization was originally proposed in the context of multicellular organisms, the effect of multicellularity and other classes of hierarchical organization on evolvability has not been considered by theoreticians. We address this issue using a Boolean population model with explicit representation of an environment in which individuals with explicit genotype and a hierarchical phenotype representing multicellularity evolve. Robustness is described by a single real number between zero and one which emerges from the genotype–phenotype map. We find that high robustness is favoured in constant environments, and lower robustness is favoured after environmental change. Multicellularity and hierarchical organization severely constrain robustness: peak evolvability occurs at an absolute level of robustness of about 0.99 compared with values of about 0.5 in a classical neutral network model. These constraints result in a sharp peak of evolvability in which the maximum is set by the fact that the fixation of adaptive mutations becomes more improbable as robustness decreases. When robustness is put under genetic control, robustness levels leading to maximum evolvability are selected for, but maximal relative fitness appears to require recombination.  相似文献   

12.
Shyness and boldness has been considered a fundamental axis of human behavioural variation. At the extreme ends of this behavioural continuum subjects vary from being bold and assertive to shy and timid. Analogous patterns of individual variation have been noted in a number of species including fish. There has been debate on the nature of this continuum as to whether it depends on context. That is, whether it is domain‐general (as in humans), or context‐specific. The purpose of our study was to test if shyness and boldness depends on context in rainbow trout, Oncorhynchus mykiss and to this end we estimated boldness in five different situations. Our data provide evidence of a shy–bold behavioural syndrome in rainbow trout. Bold trout tended to be bold in four situations when the context was similar (when the context concerned foraging). However, in a different context, exploring a swim flume, the ranking was entirely different. We suggest that shyness and boldness depends on context in rainbow trout.  相似文献   

13.
Understanding how animal personality (consistent between‐individual behavioural differences) arises has become a central topic in behavioural sciences. This endeavour is complicated by the fact that not only the mean behaviour of individuals (behavioural type) but also the strength of their reaction to environmental change (behavioural plasticity) varies consistently. Personality and cognitive abilities are linked, and we suggest that behavioural plasticity could also be explained by differences in brain size (a proxy for cognitive abilities), since accurate decisions are likely essential to make behavioural plasticity beneficial. We test this idea in guppies (Poecilia reticulata), artificially selected for large and small brain size, which show clear cognitive differences between selection lines. To test whether those lines differed in behavioural plasticity, we reared them in groups in structurally enriched environments and then placed adults individually into empty tanks, where we presented them daily with visual predator cues and monitored their behaviour for 20 days with video‐aided motion tracking. We found that individuals differed consistently in activity and risk‐taking, as well as in behavioural plasticity. In activity, only the large‐brained lines demonstrated habituation (increased activity) to the new environment, whereas in risk‐taking, we found sensitization (decreased risk‐taking) in both brain size lines. We conclude that brain size, potentially via increasing cognitive abilities, may increase behavioural plasticity, which in turn can improve habituation to novel environments. However, the effects seem to be behaviour‐specific. Our results suggest that brain size likely explains some of the variation in behavioural plasticity found at the intraspecific level.  相似文献   

14.
Experiments using behavioural, lesion, functional imaging and single neuron methods are considered in the context of a neuropsychological model of visual attention. According to this model, inputs compete for representation in multiple visually responsive brain systems, sensory and motor, cortical and subcortical. Competition is biased by advance priming of neurons responsive to current behavioural targets. Across systems competition is integrated such that the same, selected object tends to become dominant throughout. The behavioural studies reviewed concern divided attention within and between modalities. They implicate within-modality competition as one main restriction on concurrent stimulus identification. In contrast to the conventional association of lateral attentional focus with parietal lobe function, the lesion studies show attentional bias to be a widespread consequence of unilateral cortical damage. Although the clinical syndrome of unilateral neglect may indeed be associated with parietal lesions, this probably reflects an assortment of further deficits accompanying a simple attentional imbalance. The functional imaging studies show joint involvement of lateral prefrontal and occipital cortex in lateral attentional focus and competition. The single unit studies suggest how competition in several regions of extrastriate cortex is biased by advance priming of neurons responsive to current behavioural targets. Together, the concepts of competition, priming and integration allow a unified theoretical approach to findings from behavioural to single neuron levels.  相似文献   

15.
Seasonality of environments is a widespread phenomenon and many species show seasonal behavioural changes as an adaptation to this environmental variability. Exploratory behaviour, an important means to obtain information about the environment, varies between species depending on different costs and benefits of exploration under various environmental conditions or life styles. It can be expected that exploration also varies intraspecifically over the annual cycle according to seasonally changing costs and benefits of exploration due to seasonal environments and/or an organism's requirements. Captive garden and Sardinian warblers were confronted with five different and novel objects in their familiar aviary over the course of 1 yr. Both species showed a seasonal peak in object exploration in spring and low exploration values throughout the rest of the year indicating that knowledge about the environment is particularly important during the time of territory or nest‐site selection. Furthermore, the year‐round resident Sardinian warblers were more explorative than the migratory garden warblers. Residents have to be well informed about their environment and changes therein, whereas this is less important for migrants. This corroborates earlier findings in parrots and seems to be a general phenomenon consistent across taxa.  相似文献   

16.
Behavioural compatibility between mates is fundamental for maintaining species boundaries and is achieved through appropriate communication between males and females. A breakdown in communication will lead to behavioural divergence and reduced interfertility. In this review, we summarise the current knowledge on male signals and female perception of these signals, integrating the literature from several taxa. We advocate that signaller–perceiver coevolution, which is usually under strong stabilising selection to enable mating, forms the basis of species-specific mate recognition systems. The mechanisms (phylogeny, geography, ecology, biology) shaping signaller–perceiver systems are briefly discussed to demonstrate the factors underpinning the evolution of signaller–perceiver couplings. Since divergence and diversification of communication systems is driven by changes in the mechanical properties of sensory pathways and morphology of sensory organs, we highlight signal modalities (auditory, olfactory, visual, tactile) and their importance in communication, particularly in mate selection. Next, using available examples and generating a stylised model, we suggest how disruption (biological, ecological, stochastic) of signaller–perceiver systems drives behavioural divergence and consequently results in reduced interfertility and speciation. Future studies should adopt an integrative approach, combining multiple parameters (phylogeny, adaptive utility of communication systems, genetics and biomechanical/biochemical properties of signals and perception) to explore how disruption of signaller–perceiver systems results in behavioural divergence and reduced interfertility. Finally, we question the impact that rapid environmental change will have on disruption of communication systems, potentially interfering with signaller–perceiver couplings.  相似文献   

17.
Social plasticity is a ubiquitous feature of animal behaviour. Animals must adjust the expression of their social behaviour to the nuances of daily social life and to the transitions between life‐history stages, and the ability to do so affects their Darwinian fitness. Here, an integrative framework is proposed for understanding the proximate mechanisms and ultimate consequences of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of the neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different brain genomic and epigenetic states correspond to different behavioural responses and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. At the evolutionary scale, social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. In cases when social plasticity is too costly or incomplete, behavioural consistency can emerge by directional selection that recruits gene modules corresponding to favoured behavioural states in that environment. As a result of this integrative approach, how knowledge of the proximate mechanisms underlying social plasticity is crucial to understanding its costs, limits and evolutionary consequences is shown, thereby highlighting the fact that proximate mechanisms contribute to the dynamics of selection. The role of teleosts as a premier model to study social plasticity is also highlighted, given the diversity and plasticity that this group exhibits in terms of social behaviour. Finally, the proposed integrative framework to social plasticity also illustrates how reciprocal causation analysis of biological phenomena (i.e. considering the interaction between proximate factors and evolutionary explanations) can be a more useful approach than the traditional proximate–ultimate dichotomy, according to which evolutionary processes can be understood without knowledge on proximate causes, thereby black‐boxing developmental and physiological mechanisms.  相似文献   

18.
1. Animal personality is defined as the repeatable between‐individual differences in behaviour over time and contexts. Some personality traits, such as activity or aggression, have received much attention while other behaviours, such as habitat preference or learning, have been neglected. 2. Wormlion larvae are sit‐and‐wait dipteran predators that inhabit shaded microhabitats in the field and also prefer shade in the laboratory. The aim of the present study was to examine wormlion larvae behavioural repeatability in general and specifically in the context of habitat preference. In order to achieve this, three experiments were conducted to determine whether, to what extent and under which conditions wormlion preference for shaded microhabitats is repeatable. 3. Individual tendency to relocate when the environment conditions deteriorate was also assessed, by switching between shaded and illuminated conditions, either with or without pit destruction. 4. Larvae showed a highly repeatable preference for shade. Repeatability was detected in additional behavioural traits: pit construction, pit area and tendency to relocate. 5. This behavioural repeatability was demonstrated under constant microhabitat conditions, with distinct behaviours in each setting. Under constant illumination, wormlions constructed smaller pits, moved over longer distances and were found at the tray edges more frequently than under constant shade conditions, suggesting that illuminated environments are perceived as risky or unsuitable. 6. Switching between the two microhabitat conditions without pit destruction induced fewer relocations than switching with pit destruction, suggesting that wormlions do not tend to abandon their pits, even if their microhabitat conditions deteriorate.  相似文献   

19.
In this work, based on behavioural and dynamical evidence, a study of simulated agents with the capacity to change feedback from their bodies to accomplish a one-legged walking task is proposed to understand the emergence of coupled dynamics for robust behaviour. Agents evolve with evolutionary-defined biases that modify incoming body signals (sensory offsets). Analyses on whether these agents show further dependence to their environmental coupled dynamics than others with no feedback control is described in this article. The ability to sustain behaviours is tested during lifetime experiments with mutational and sensory perturbations after evolution. Using dynamical systems analysis, this work identifies conditions for the emergence of dynamical mechanisms that remain functional despite sensory perturbations. Results indicate that evolved agents with evolvable sensory offset depends not only on where in neural space the state of the neural system operates, but also on the transients to which the inner-system was being driven by sensory signals from its interactions with the environment, controller, and agent body. Experimental evidence here leads discussions on a dynamical systems perspective on behavioural robustness that goes beyond attractors of controller phase space.  相似文献   

20.
M. Edenbrow  D. P. Croft 《Oikos》2013,122(5):667-681
Consistent individual differences in behaviour are well documented, for example, individuals can be defined as consistently bold or consistently shy. To date our understanding of the mechanisms underpinning consistent individual differences in behaviour (also termed behavioural types (BTs)) remains limited. Theoretical work suggests life‐history tradeoffs drive BT variation, however, empirical support is scarce. Moreover, whilst life‐history is known to be phenotypically plastic in response to environmental conditions during ontogeny, the extent to which such plasticity drives plasticity in behavioural traits and personality remains poorly understood. Using a natural clonal vertebrate, Kryptolebias marmoratus, we control for genetic variation and investigate developmental plasticity in life‐history and three commonly studied behavioural traits (exploration, boldness, aggression) in response to three ecologically relevant environments; conspecific presence, low food and perceived risk. Simulated predation risk was the only treatment that generated repeatable behaviour i.e. personality during ontogeny. Treatments differed in their effects on mean life‐history and behavioural scores. Specifically, low food fish exhibited reduced growth rate and exploration but did not differ from control fish in their boldness or aggression scores. Conspecific presence resulted in a strong negative effect on mean aggression, boldness and exploration during ontogeny but had minimal effect on life‐history traits. Simulated predation risk resulted in increased reproductive output but had minimal effect upon average behavioural scores. Together these results suggest that life‐history plasticity/variation may be insufficient in driving variation in personality during development. Finally, using offspring derived from each rearing environment we investigate maternal effects and find strong maternal influence upon offspring size, but not behaviour. These results highlight and support the current understanding that risk perception is important in shaping personality, and that social experience during ontogeny is a major influence upon behavioural expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号