首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Over several decades, the distribution patterns and evolution of alpine disjunct species has become an increasingly discussed subject. Large scale genetic analysis has allowed the resolution of the past range changes and intraspecific evolution of many species, in Europe especially of Mediterranean origin. However, the phylogeographic structures of species with arctic-alpine disjunct distribution patterns are relatively poorly studied. The existing phylogeographic analysis (mostly of alpine plant species) supports disjunct distributions during glacial as well as post-glacial periods for a number of species. However, several questions still remain unresolved and we therefore analysed the Mountain Ringlet Erebia epiphron as a model for such alpine disjunct species. We found strong differentiation into five different lineages supporting five differentiation centres: (i) the eastern Pyrenees, (ii) the mountain ranges between the central Pyrenees and south-western Alps, (iii, iv) two areas along the southern Alps margin and (v) the northern Alps margin. We propose that these patterns evolved due to the humidity requirements of this species, which did not allow survival in the dry glacial steppes, but along the margins of the wetter glaciated high mountain ranges.  相似文献   

2.
Aim To assess whether altitude changes in the distribution of butterflies during the second half of the 20th century are consistent with climate warming scenarios. Location The Czech Republic. Methods Distributional data were taken from a recent butterfly distribution atlas, which maps all Czech butterflies using a grid of 10′ longitude to 6′ latitude, equivalent to about 11.1 × 12 km. Cell altitude was used as an independent variable, and altitudinal ranges of individual species (less migrants, extinct species, recent arrivals and extremely rare species) in 1950–80 vs. 1995–2001 and in 1950–80, 1981–94, 1995–2001 were compared using U‐tests and linear regressions. Results Of 117 (U‐tests) and 119 (regressions) species, we found significant uphill increases in 15 and 12 species, respectively. The two groups were nested; none (U‐test) and one (regression) species showed a significant altitudinal decrease. Binomial tests of frequencies of signs of the U‐tests and regression coefficients, including nonsignificant ones, also showed that the increases prevailed. The mean and median of the significant shifts were 60 and 90 m, respectively, and the maximum shift per species was 148 m. The recording effort in individual time periods was not biased with respect to altitude. Main conclusion Altitude shifts in the distribution of Czech butterflies are already detectable on the coarse scales of standard distribution maps. The increasing species do not show any consistent pattern in habitat affiliations, conservation status and mountain vs. nonmountain distribution, which renders climatic explanation as the most likely cause of the distributional shifts.  相似文献   

3.
4.
5.
6.
Ng KK  Lee SL  Koh CL 《Molecular ecology》2004,13(3):657-669
Analyses of the spatial distribution pattern, spatial genetic structure and of genetic diversity were carried out in two tropical tree species with contrasting breeding systems and different ploidy levels using a 50-ha demographic plot in a lowland dipterocarp forest in Peninsular Malaysia. Shorea leprosula is a diploid and predominantly outcrossed species, whereas S. ovalis ssp. sericea is an autotetraploid species with apomictic mode of reproduction. Genetic diversity parameters estimated for S. leprosula using microsatellite were consistently higher than using allozyme. In comparisons with S. leprosula and other tropical tree species, S. ovalis ssp. sericea also displayed relatively high levels of genetic diversity. This might be explained by the lower pressure of genetic drift due to tetrasomic inheritance, and for autotetraploids each locus can accommodate up to four different alleles and this allows maintenance of more alleles at individual loci. The observed high levels of genetic diversity in S. ovalis ssp. sericea can also be due to a random retention of more heterogeneous individuals in the past, and the apomictic mode of reproduction might be an evolutionary strategy, which allows the species to maintain high levels of genetic diversity. The spatial distribution pattern analyses of both species showed significant levels of aggregation at small and medium but random distribution at the big diameter-class. The decrease in magnitude of spatial aggregation from small- to large-diameter classes might be due to compensatory mortality during recruitment and survival under competitive thinning process. Spatial genetic structure analyses for both species revealed significant spatial genetic structure for short distances in all the three diameter-classes. The magnitude of spatial genetic structure in both species was observed to be decreasing from smaller- to larger-diameter classes. The high spatial genetic structuring observed in S. ovalis ssp. sericea at the small-diameter class is due primarily to limited seed dispersal and apomictic mode of reproduction. The similar observation in S. leprosula, however, can be explained by limited seed and pollen dispersal, which supports further the fact that the species is pollinated by weak fliers, mainly of Thrips and Megalurothrips in the lowland dipterocarp forest.  相似文献   

7.
Mountain species have evolved important genetic differentiation due to past climatic fluctuations. The genetic uniqueness of many of these lineages is now at risk due to global warming. Here, we analyse allozyme polymorphisms of 1306 individuals (36 populations) of the mountain butterfly Erebia manto and perform Species Distribution Models (SDMs). As a consensus of analyses, we obtained six most likely genetic clusters: (i) Pyrenees with Massif Central; (ii) Vosges; (iii–v) Alps including the Slovakian Carpathians; (vi) southern Carpathians. The Vosges population showed the strongest genetic split from all other populations, being almost as strong as the split between E. manto and its sister species Erebia eriphyle. The distinctiveness of the Pyrenees‐Massif Central group and of the southern Carpathians group from all other groups is also quite high. All three groups are assumed to have survived more than one full glacial–interglacial cycle close to their current distributions with up‐hill and down‐slope shifts conforming climatic conditions. In contrast with these well‐differentiated groups, the three groups present in the Alps and the Slovakian Carpathians show a much shallower genetic structure and thus also should be of a more recent origin. As predicted by our SDM projections, rising temperatures will strongly impact the distribution of E. manto. While the populations in the Alps are predicted to shrink, the survival of the three lineages present here should not be at risk. The situation of the three other lineages is quite different. All models predict the extinction of the Vosges lineage in the wake of global warming, and also the southern Carpathians and Pyrenees‐Massif Central lineages might be at high risk to disappear. Thus, albeit global warming will therefore be unlikely to threaten E. manto as a species, an important proportion of the species’ intraspecific differentiation and thus uniqueness might be lost.  相似文献   

8.
To test the hypotheses that butterflies in an intact lowland rainforest are randomly distributed in space and time, a guild of nymphalid butterflies was sampled at monthly intervals for one year by trapping 883 individuals of 91 species in the canopy and understory of four contiguous, intact forest plots and one naturally occurring lake edge. The overall species abundance distribution was well described by a log-normal distribution. Total species diversity (γ-diversity) was partitioned into additive components within and among community subdivisions (α-diversity and β-diversity) in vertical, horizontal and temporal dimensions. Although community subdivisions showed high similarity (l-β-diversity/γ-diversity), significant β-diversity existed in each dimension. Individual abundance and observed species richness were lower in the canopy man in the understory, but rarefaction analysis suggested that the underlying species richness was similar in both canopy and understory. Observed species richness varied among four contiguous forest plots, and was lowest in the lake edge plot. Rarefaction and species accumulation curves showed that one forest plot and the lake edge had significantly lower species richness than other forest plots. Within any given month, only a small fraction of total sample species richness was represented by a single plot and height (canopy or understory). Comparison of this study to a similar one done in disturbed forest showed diat butterfly diversity at a naturally occurring lake edge differed strongly from a pasture-forest edge. Further comparison showed that species abundance distributions from intact and disturbed forest areas had variances that differed significandy, suggesting mat in addition to extrapolation, rarefaction and species accumulation techniques, the shapes of species abundance distributions are fundamental to assessing diversity among sites. This study shows the necessity for long-term sampling of diverse communities in space and time to assess tropical insect diversity among different areas, and the need of such studies is discussed in relation to tropical ecology and quick surveys in conservation biology.  相似文献   

9.
Aim The phylogeography of ‘southern’ species is relatively well studied in Europe. However, there are few data about ‘northern’ species, and so we studied the population genetic structure of the arctic‐alpine distributed burnet moth Zygaena exulans as an exemplar. Location and methods The allozymes of 209 individuals from seven populations (two from the Pyrenees, five from the Alps) were studied by electrophoresis. Results All 15 analysed loci were polymorphic. The mean genetic diversities were moderately high (A: 1.99; He: 11.5; P: 65%). Mean genetic diversities were significantly higher in the Alps than in the Pyrenees in all cases. FST was 5.4% and FIS was 10%. Genetic distances were generally low with a mean of 0.022 between large populations. About 62% of the variance between populations was between the Alps and the Pyrenees. The two samples from the Pyrenees had no significant differentiation, whereas significant differentiation was detected between the populations from the Alps (FST = 2.8%, P = 0.02). Main conclusion Zygaena exulans had a continuous distribution between the Alps and the Pyrenees during the last ice age. Most probably, the species was not present in Iberia, and the samples from the Pyrenees are derived from the southern edge of the glacial distribution area and thus became genetically impoverished. Post‐glacial isolation in Alps and Pyrenees has resulted in a weak genetic differentiation between these two disjunct high mountain systems.  相似文献   

10.
11.
The sea acts as an effective dispersal barrier for most terrestrial animal species. Narrow sea straits, therefore, often represent areas where species are able to disperse from one land mass to another. In the Mediterranean Sea, the narrowest connecting points between North Africa and Europe are the Strait of Gibraltar and the Strait of Sicily. In the past, climatic oscillations caused changing sea levels and thus influenced the permeability of these sea straits. We analysed the genetic structure of four butterfly species that all occur on both sides of the Strait of Sicily. In all four species, we observed a lack of genetic differentiation between the populations of North Africa and those of Italy. Species distribution models support the strong cohesiveness in that they show a largely continuous glacial distribution over Italy and North Africa. The data obtained reveal that there was a large exchange of individuals between Italy and the eastern Maghreb during the last ice age. This might not only be the case for the species under investigation in the present study, but also might represent a more general pattern for mobile thermophilic western Palearctic species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 818–830.  相似文献   

12.
The forests in the Iberian Peninsula have been strongly influenced by past climatic changes, but reconstructing their historical distributions and dynamics is very difficult due to the complex climatic characteristics and relief of the region. Research disciplines such as phylogeography and species distribution modelling can describe the past range dynamics of individual tree species in relatively great detail and help elucidate how these species have reacted to climatic changes. Here we review phylogeographical and modelling studies from species representative of the major Iberian forest types and attempt to extract general trends from the diversity of individual species histories in the Peninsula. To date most studies focus on geographical range dynamics during the Pleistocene, but an increasing body of evidence shows that some species have also retained the genetic imprints of much more ancient processes. Many widespread Iberian species show a deep and often remarkably clear-cut divide between populations from the Mediterranean and from the Atlantic regions of the Iberian Peninsula, suggesting that both areas have independently sustained viable populations over extended periods. In fact, phylogeographical studies commonly find that species had several glacial refugia across the Iberian Peninsula. On the other hand, distribution models help identifying further suitable areas that could have sustained so far undetected refugia. Such studies are of interest for species conservation, because refugium populations are high-priority targets due to their long-term persistence and unique evolutionary trajectory. Overall, we conclude that palaeoecology, phylogeography and species distribution modelling have a great potential to inform each other because of their complementary perspectives and results. A true integration of these approaches is therefore fundamental for further progress in our understanding of past Iberian environments and the organisms they harboured.  相似文献   

13.
How does range expansion affect genetic diversity in species with different ecologies, and do different types of genetic markers lead to different conclusions? We addressed these questions by assessing the genetic consequences of postglacial range expansion using mitochondrial DNA (mtDNA) and nuclear restriction site‐associated DNA (RAD) sequencing in two congeneric and codistributed rodents with different ecological characteristics: the desert kangaroo rat (Dipodomys deserti), a sand specialist, and the Merriam's kangaroo rat (Dipodomys merriami), a substrate generalist. For each species, we compared genetic variation between populations that retained stable distributions throughout glacial periods and those inferred to have expanded since the last glacial maximum. Our results suggest that expanded populations of both species experienced a loss of private mtDNA haplotypes and differentiation among populations, as well as a loss of nuclear single‐nucleotide polymorphism (SNP) private alleles and polymorphic loci. However, only D. deserti experienced a loss of nucleotide diversity (both mtDNA and nuclear) and nuclear heterozygosity. For all indices of diversity and differentiation that showed reduced values in the expanded areas, D. deserti populations experienced a greater degree of loss than did D. merriami populations. Additionally, patterns of loss in genetic diversity in expanded populations were substantially less extreme (by two orders of magnitude in some cases) for nuclear SNPs in both species compared to that observed for mitochondrial data. Our results demonstrate that ecological characteristics may play a role in determining genetic variation associated with range expansions, yet mtDNA diversity loss is not necessarily accompanied by a matched magnitude of loss in nuclear diversity.  相似文献   

14.
The high species endemism characteristic of many of the world's terrestrial island systems provides a model for studying evolutionary patterns and processes, yet there has been no synthesis of studies to provide a systematic evaluation of terrestrial island systems in this context. The banded iron formations (BIFs) of south‐western Australia are ancient terrestrial island formations occurring within a mosaic of alluvial clay soils, sandplains and occasional granite outcropping, across an old, gently undulating, highly weathered, plateau. Notably, these BIFs display exceptionally high beta plant diversity. Here, we address the determinants and consequences of genetic diversity for BIF‐associated plant species through a comprehensive review of all studies on species distribution modelling, phylogenetics, phylogeography, population genetics, life‐history traits and ecology. The taxa studied are predominantly narrowly endemic to individual or a few BIF ranges, but some have more regional distributions occurring both on and off BIFs. We compared genetic data for these BIF‐endemic species to other localised species globally to assess whether the unique history and ancestry of BIF landscapes has driven distinct genetic responses in plants restricted to this habitat. We also assessed the influence of life‐history parameters on patterns of genetic diversity. We found that BIF‐endemic species display similar patterns of genetic diversity and structure to other species with localised distributions. Despite often highly restricted distributions, large effective population size or clonal reproduction appears to provide these BIF‐endemic species with ecological and evolutionary resilience to environmental stochasticity. We conclude that persistence and stochasticity are key determinants of genetic diversity and its spatial structure within BIF‐associated plant species, and that these are key evolutionary processes that should be considered in understanding the biogeography of inselbergs worldwide.  相似文献   

15.
16.
The ‘centre–periphery hypothesis’ (CPH) is a long‐standing postulate in ecology that states that genetic variation and demographic performance of a species decrease from the centre to the edge of its geographic range. This hypothesis is based on an assumed concordance between geographical peripherality and ecological marginality such that environmental conditions become harsher towards the limits of a species range. In this way, the CPH sets the stage for understanding the causes of distribution limits. To date, no study has examined conjointly the consistency of these postulates. In an extensive literature review we discuss the birth and development of the CPH and provide an assessment of the CPH by reviewing 248 empirical studies in the context of three main themes. First, a decrease in species occurrence towards their range limits was observed in 81% of studies, while only 51% demonstrated reduced abundance of individuals. A decline in genetic variation, increased differentiation among populations and higher rates of inbreeding were demonstrated by roughly one in two studies (47, 45 and 48%, respectively). However, demographic rates, size and population performance less often followed CPH expectations (20–30% of studies). We highlight the impact of important methodological, taxonomic, and biogeographical biases on such validation rates. Second, we found that geographic and ecological marginality gradients are not systematically concordant, which casts doubt on the reliability of a main assumption of the CPH. Finally, we attempt to disentangle the relative contribution of geographical, ecological and historical processes on the spatial distribution of genetic and demographic parameters. While ecological marginality gradients explain variation in species' demographic performance better than geographic gradients, contemporary and historical factors may contribute interactively to spatial patterns of genetic variation. We thereby propose a framework that integrates species' ecological niche characteristics together with current and past range structure to investigate spatial patterns of genetic and demographic variation across species ranges.  相似文献   

17.
Past climate change has caused shifts in species distributions and undoubtedly impacted patterns of genetic variation, but the biological processes mediating responses to climate change, and their genetic signatures, are often poorly understood. We test six species‐specific biologically informed hypotheses about such processes in canyon live oak (Quercus chrysolepis) from the California Floristic Province. These hypotheses encompass the potential roles of climatic niche, niche multidimensionality, physiological trade‐offs in functional traits, and local‐scale factors (microsites and local adaptation within ecoregions) in structuring genetic variation. Specifically, we use ecological niche models (ENMs) to construct temporally dynamic landscapes where the processes invoked by each hypothesis are reflected by differences in local habitat suitabilities. These landscapes are used to simulate expected patterns of genetic variation under each model and evaluate the fit of empirical data from 13 microsatellite loci genotyped in 226 individuals from across the species range. Using approximate Bayesian computation (ABC), we obtain very strong support for two statistically indistinguishable models: a trade‐off model in which growth rate and drought tolerance drive habitat suitability and genetic structure, and a model based on the climatic niche estimated from a generic ENM, in which the variables found to make the most important contribution to the ENM have strong conceptual links to drought stress. The two most probable models for explaining the patterns of genetic variation thus share a common component, highlighting the potential importance of seasonal drought in driving historical range shifts in a temperate tree from a Mediterranean climate where summer drought is common.  相似文献   

18.
Zulu traditional health practitioners have claimed that the roots of Eriosema kraussianum N. E. Br. (Fabaceae) and other Eriosema species (Zulu indigenous umbrella name of "uBangalala") are effective remedies for the treatment of erectile dysfunction (ED) and/or impotence. In order to scientifically appraise the significance and contribution of Eriosema kraussianum to its ethnomedical use as "uBangalala" and "VIAGRA substitute", the present study was undertaken to investigate the vasodilatory and hypoglycaemic properties of the two main bioactive chemical compounds obtained from E. kraussianum, in experimental rat models, using sildenafil citrate (VIAGRA) as the reference drug for comparison. The two E. kraussianum rootstock constituents (K1 and K2, 20-80 mg/kg p.o.) caused dose-dependent and significant (P<0.05-0.001) hypoglycaemia in rats. Relatively low to high concentrations of the plant's extracts (K1 and K2, 100-2000 microg/ml) always produced biphasic effects on rat isolated portal veins. K1- and K2-provoked responses of the isolated portal veins always consisted of concentration-related initial transient, but significant (P<0.05), contractions of the venous muscle preparations, followed by secondary, longer-lasting, highly significant (P<0.01-0.001) relaxations of the venous muscle strips. Sildenafil citrate (VIAGRA, 5-100 microg/ml) always produced concentration-related and highly significant relaxations of the rat isolated portal veins. Unlike K1 and K2 (20-80 mg/kg p.o.), however, sildenafil citrate (VIAGRA, 100 mg/kg p. o.) only caused slight and insignificant (P>0.05) reductions in the blood glucose levels of the experimental animals used. On the other hand, glibenclamide (10 mg/kg p.o.) induced highly significant (P<0.05-0.001), marked reductions in the blood glucose concentrations of the rats. The findings of this laboratory animal study indicate that the two hydro-ethanol extractives of E. kraussianum (K1 and K2) possess hypoglycaemic and secondary, vasorelaxant effects in the experimental paradigms used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号