首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 3 毫秒
1.
Human activities threaten reef ecosystems globally, forcing ecological change at rates and scales regarded as unprecedented in the Holocene. These changes are so profound that a cessation of reef accretion (reef ‘turn‐off’) and net erosion of reef structures is argued by many as the ultimate and imminent trajectory. Here, we use a regional scale reef growth dataset, based on 76 core records (constrained by 211 radiometric dates) from 22 reefs along and across the inner‐shelf of the Great Barrier Reef, Australia, to examine the timing of different phases of reef initiation (‘turn‐on’), growth and ‘turn‐off’ during the Holocene. This dataset delineates two temporally discrete episodes of reef‐building over the last 8500 years: the first associated with the Holocene transgression‐early highstand period [~8.5–5.5 k calibrated years bp (cal ybp )]; the second since ~2.3 k cal ybp . During both periods, reefs accreted rapidly to sea level before entering late evolutionary states – states naturally characterized by reduced coral cover and low accretion potential – and a clear hiatus occurs between these reef‐building episodes for which no records of reef initiation exist. These transitions mimic those projected under current environmental disturbance regimes, but have been driven entirely by natural forcing factors. Our results demonstrate that, even through the late Holocene, reef health and growth has fluctuated through cycles independent of anthropogenic forcing. Consequently, degraded reef states cannot de facto be considered to automatically reflect increased anthropogenic stress. Indeed, in many cases degraded or nonaccreting reef communities may reflect past reef growth histories (as dictated by reef growth–sea level interactions) as much as contemporary environmental change. Recognizing when changes in reef condition reflect these natural ‘turn‐on’– growth –‘turn‐off’ cycles and how they interact with on‐going human disturbance is critical for effective coral reef management and for understanding future reef ecological trajectories.  相似文献   

2.
3.

Aim

Changing preferences regarding which species humans have transported to new regions can have major consequences for the potential distribution of alien taxa, but the mechanisms shaping these patterns are poorly understood. We assessed the extent to which changes in human preferences for transporting and introducing alien freshwater fishes have altered their biogeography.

Location

Australia.

Methods

We compiled an up‐to‐date database of alien freshwater fishes established in drainages in Australia before and after the number of established alien fish species doubled (pre‐1970 and post‐1970, respectively). Using metacommunity models, we analysed the influence of species traits and drainage features on the distribution of alien fishes that established pre‐ and post‐1970.

Results

Alien fishes in Australia were introduced via four main transport pathways: acclimatization, aquaculture, biocontrol and ornamental trade. The relative importance of each pathway changed substantially between the two periods, accompanied by changes in the distribution of alien fishes and the variables predicting their distribution. Pre‐1970, most species (64%) were introduced by acclimatization societies for purposes such as angling and biocontrol, and these fish have established in inland drainages more heavily impacted by human activities. In contrast, most of the post‐1970 introductions (69%) were ornamental fishes, with most species established in small, north‐eastern, tropical and subtropical coastal drainages.

Main conclusions

Substantial changes in introduction preferences and transport pathways over time have altered both the patterns and underlying processes shaping the biogeography of alien fishes in Australia. Our findings highlight the need for caution when using historical data to infer potential future distributions of alien species. The continuing spread of alien species means traditional biogeographical units may no longer be identifiable in the foreseeable future.
  相似文献   

4.
Secondary habitats are increasing in importance in tropical countries due to ongoing destruction of pristine vegetation. In spite of the magnitude of current changes, our understanding of their effects on nontrees (e.g., nonvascular or vascular epiphytes) is still very patchy, particularly in lowland habitats. Here, we report a study with isolated pasture trees in southwest Panama. The >800 studied trees, which belonged to >100 different species, harbored almost 27,000 epiphytes of 83 species. Orchidaceae was the most species‐rich family, with almost 60 percent of all species, while Bromeliaceae were most abundant. A rainfall gradient in the study region from ca 1000 to >3000 mm explained more of the variation in species abundance and richness than host characteristics (e.g., species identity, tree size). The unexpectedly large number of epiphytes in these pastures still represents a substantial change relative to a natural setting, which is suggested by a comparison with a forest inventory under similar climatic conditions. In pastures, species richness was lower as deduced from individual‐based rarefaction curves, a larger proportion of species and individuals showed crassulacean acid metabolism, and the relationship of epiphyte abundance/species richness and tree diameter was much less steep. Even the already reduced diversity, however, may be only transient in secondary habitats—the long‐term persistence of epiphyte populations in pastures is an open question and has to be addressed by repeated monitoring to fully evaluate the significance of pasture trees for the conservation of vascular epiphytes in tropical lowlands.  相似文献   

5.
6.
Divergent natural selection regimes can contribute to adaptive population divergence, but can be sensitive to human‐mediated environmental change. Nutrient loading of aquatic ecosystems, for example, might modify selection pressures by altering the abundance and distribution of resources and the prevalence and infectivity of parasites. Here, we used a mesocosm experiment to test for interactive effects of nutrient loading and parasitism on host condition and feeding ecology. Specifically, we investigated whether the common fish parasite Gyrodactylus sp. differentially affected recently diverged lake and stream ecotypes of three‐spined stickleback (Gasterosteus aculeatus). We found that the stream ecotype had a higher resistance to Gyrodactylus sp. infections than the lake ecotype, and that both ecotypes experienced a cost of parasitism, indicated by negative relationships between parasite load and both stomach fullness and body condition. Overall, our results suggest that in the early stages of adaptive population divergence of hosts, parasites can affect host resistance, body condition and diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号