首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Herbivorous insects use highly specific volatiles or blends of volatiles characteristic to particular plant species to locate their host plants. Thus, data on olfactory preferences can be valuable in developing integrated pest management tools that deal with manipulation of pest insect behaviour. We examined host plant odour preferences of the tomato leafminer, Liriomyza bryoniae (Kaltenbach) (Diptera: Agromyzidae), which is an economically important agricultural pest widespread throughout Europe. The odour preferences of leafminers were tested in dependence of feeding experiences. We ranked host plant odours by their appeal to L. bryoniae based on two‐choice tests using a Y‐tube olfactometer with five host plants: tomato, Solanum lycopersicum Mill.; bittersweet, Solanum dulcamara L.; downy ground‐cherry, Physalis pubescens L. (all Solanaceae); white goosefoot, Chenopodium album L. (Chenopodiaceae); and dead nettle, Lamium album L. (Lamiaceae). The results imply that ranking of host plant odours by their attractiveness to L. bryoniae is complicated due to the influence of larval and adult feeding experiences. Without any feeding experience as an adult, L. bryoniae males showed a preference for the airflow with host plant odour vs. pure air, whereas females did not display a preference. Further tests revealed that adult feeding experience can alter the odour choice of L. bryoniae females. After feeding experience, females showed a preference for host plant odour vs. pure air. Feeding experience in the larval stage influenced the choice by adults of both sexes: for males as well as females reared on bittersweet the odour of that plant was the most attractive. Thus, host feeding experience both in larval and/or adult stage of polyphagous tomato leafminer L. bryoniae influences host plant odour preference by adults.  相似文献   

2.
3.
Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect–host interactions, but also for the development of sustainable pest‐control strategies that exploit insects' host‐seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host‐seeking have focussed on short‐range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of ‘habitat cues’, volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil‐dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non‐host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant‐derived repellents for controlling insect pests.  相似文献   

4.
Pheromone-source orientation behavior can be modified by coexisting plant volatiles. Some host plant volatiles enhance the pheromonal responses of olfactory receptor neurons and increase the sensitivity of orientation behavior in the Lepidoptera species. Although many electrophysiological studies have focused on the pheromonal response of olfactory interneurons, the response to the mixture of pheromone and plant odor is not yet known. Using the silkmoth, Bombyx mori, we investigated the physiology of interneurons in the antennal lobe (AL), the primary olfactory center in the insect brain, in response to a mixture of the primary pheromone component bombykol and cis-3-hexen-1-ol, a mulberry leaf volatile. Application of the mixture enhanced the pheromonal responses of projection neurons innervating the macroglomerular complex in the AL. In contrast, the mixture of pheromone and cis-3-hexen-1-ol had little influence on the responses of projection neurons innervating the ordinary glomeruli whereas other plant odors dynamically modified the response. Together this suggests moths can process plant odor information under conditions of simultaneous exposure to sex pheromone.  相似文献   

5.
The astonishing diversity of plants and insects and their entangled interactions are cornerstones in terrestrial ecosystems. Co-occurring with species diversity is the diversity of plant secondary metabolites (PSMs). So far, their estimated number is more than 200 000 compounds, which are not directly involved in plant growth and development but play important roles in helping plants handle their environment including the mediation of plant–insect interactions. Here, we use plant volatile organic compounds (VOCs), a key olfactory communication channel that mediates plant–insect interactions, as a showcase of PSMs. In spite of the cumulative knowledge of the functional, ecological, and microevolutionary roles of VOCs, we still lack a macroevolutionary understanding of how they evolved with plant–insect interactions and contributed to species diversity throughout the long coevolutionary history of plants and insects. We first review the literature to summarize the current state-of-the-art research on this topic. We then present various relevant types of phylogenetic methods suitable to answer macroevolutionary questions on plant VOCs and suggest future directions for employing phylogenetic approaches in studying plant VOCs and plant–insect interactions. Overall, we found that current studies in this field are still very limited in their macroevolutionary perspective. Nevertheless, with the fast-growing development of metabolome analysis techniques and phylogenetic methods, it is becoming increasingly feasible to integrate the advances of these two areas. We highlight promising approaches to generate new testable hypotheses and gain a mechanistic understanding of the macroevolutionary roles of chemical communication in plant–insect interactions.  相似文献   

6.
The recognition of phytophagous insects by plants induces a set of very specific responses aimed at deterring tissue consumption and reprogramming metabolism and development of the plant to tolerate the herbivore. The recognition of insects by plants requires the plant’s ability to perceive chemical cues generated by the insects and to distinguish a particular pattern of tissue disruption. Relatively little is known about the molecular basis of insect perception by plants and the signalling mechanisms directly associated with this perception. Importantly, the insect feeding behaviour (piercing‐sucking versus chewing) is a decisive determinant of the plant’s defence response, and the mechanisms used to perceive insects from different feeding guilds may be distinct. During insect feeding, components of the saliva of chewing or piercing‐sucking insects come into contact with plant cells, and elicitors or effectors present in this insect‐derived fluid are perceived by plant cells to initiate the activation of specific signalling cascades. Although receptor–ligand interactions controlling insect perception have yet not been molecularly described, a significant number of regulatory components acting downstream of receptors and involved in the activation of defence responses against insects has been reported. Some of these regulators mediate changes in the phytohormone network, while others directly control gene expression or the redox state of the cell. These processes are central in the orchestration of plant defence responses against insects.  相似文献   

7.
植食性昆虫与寄主植物关系的本质是化学。植食性昆虫搜寻寄主的嗅觉媒介是植物气味即化学信息物质。在介绍植物气味构成及其扩散模型基础上,阐述了植物气味在地上植食性昆虫成虫、幼虫和地下植食性昆虫搜寻寄主过程中的嗅觉导向作用,并指出了今后相关研究需要注意的问题。从植物与环境因子的关系来看,植物气味包括构成性气味和诱发性气味两类,这两类气味的概念既相联系而又不同。构成性气味组分及构成因植物分类地位等而不同。诱发性气味组分因植食性昆虫取食、植物病原微生物、机械致伤等因子的胁迫而变化,这种变化性状随植物属和/或种、植株生长发育阶段、胁迫因子性质及其作用方式而不同。无论是哪种植物气味,其释放均具有节律性。气味扩散过程比较复杂,扩散状态可用数学模型表征。对于地上植食性昆虫成虫,植物气味对其寄主搜寻行为具有导向特异性,重点分析了这种特异性形成的两个假说;鳞翅目昆虫幼虫,能够利用植物化学信息物质趋向寄主植物或回避非寄主植物;地下植食性昆虫搜寻寄主,既与寄主植物地下组织释放或分泌的次级代谢物有关,又与一些初级代谢物有关。初级代谢物中的CO2,起着“搜寻触发器”作用。有助于增强人们对昆虫与植...  相似文献   

8.
Olfactory learning may allow insects to forage optimally by more efficiently finding and using favourable food sources. Although olfactory learning has been shown in bees, insect herbivores and parasitoids, there are fewer examples from polyphagous predators. In this study, olfactory learning by a predatory coccinellid beetle is reported for the first time. In laboratory trials, adults of the aphidophagous ladybird Coccinella septempunctata did not prefer the odour of one aphid-infested barley cultivar over another. However, after feeding on aphids for 24 h on a cultivar, they preferred the odour of that particular cultivar. The mechanism appeared to be associative learning rather than sensitisation. Although inexperienced ladybirds preferred the odour of an aphid-infested barley cultivar over uninfested plants of the same cultivar, after feeding experience on a different cultivar this preference disappeared. This may indicate the acquisition and replacement of olfactory templates. The odour blends of the different aphid-infested barley cultivars varied qualitatively and quantitatively, providing a potential basis for olfactory discrimination by the ladybird. The results show that predatory coccinellids can learn to associate the odour of aphid-infested plants with the presence of prey, and that this olfactory learning ability is sensitive enough to discriminate variability between different genotypes of the same plant.  相似文献   

9.
  1. Plants interact with various organisms, aboveground as well as belowground. Such interactions result in changes in plant traits with consequences for members of the plant‐associated community at different trophic levels. Research thus far focussed on interactions of plants with individual species. However, studying such interactions in a community context is needed to gain a better understanding.
  2. Members of the aboveground insect community induce defences that systemically influence plant interactions with herbivorous as well as carnivorous insects. Plant roots are associated with a community of plant‐growth promoting rhizobacteria (PGPR). This PGPR community modulates insect‐induced defences of plants. Thus, PGPR and insects interact indirectly via plant‐mediated interactions.
  3. Such plant‐mediated interactions between belowground PGPR and aboveground insects have usually been addressed unidirectionally from belowground to aboveground. Here, we take a bidirectional approach to these cross‐compartment plant‐mediated interactions.
  4. Recent studies show that upon aboveground attack by insect herbivores, plants may recruit rhizobacteria that enhance plant defence against the attackers. This rearranging of the PGPR community in the rhizosphere has consequences for members of the aboveground insect community. This review focusses on the bidirectional nature of plant‐mediated interactions between the PGPR and insect communities associated with plants, including (a) effects of beneficial rhizobacteria via modification of plant defence traits on insects and (b) effects of plant defence against insects on the PGPR community in the rhizosphere. We discuss how such knowledge can be used in the development of sustainable crop‐protection strategies.
  相似文献   

10.
Ecological interactions between plants and insects are of paramount importance for the maintenance of biodiversity and ecosystem functioning. Herbicides have long been considered a threat to plant and insect populations, but global increases in intensive agriculture and availability of herbicide-resistant crops have intensified concerns about their full impact on biodiversity. Here, we argue that exposure to sublethal herbicide doses has the potential to alter plant–insect interactions as a result of disruptions in their chemical communication. This is because herbicides interfere with biosynthetic pathways and phytohormones involved in the production of several classes of plant volatiles that mediate plant–insect chemical communication. Sublethal herbicide doses can modify the morphological and life-history plant traits and affect interactions with insects. However, the potential changes in plant volatiles and their consequences for plant–insect chemical communication have not yet received as much attention. We discuss how target-site (disruptors of primary metabolism) and non-target-site (synthetic auxins) herbicides could alter the production of plant volatiles and disrupt plant–insect chemical communication. We suggest research avenues to fill in the current gap in our knowledge that might derive recommendations and applied solutions to minimize herbicides' impacts on plant–insect interactions and biodiversity.  相似文献   

11.
In this paper it is argued that concepts developed in ecologically derived insect–plant interaction models can contribute directly to the management of insect herbivory in eucalypt plantations. Common to most species of commercially planted eucalypt is their genetic potential for early rapid growth. Several plant defence theories predict that intrinsically fast growing plants are able to tolerate relatively high levels of herbivory. The risk of this strategy failing increases when plants are exposed to external stressful factors that reduce canopy growth and vigour. Results from a young Eucalyptus camaldulensis plantation stressed by moisture deficit and two young Eucalyptus dunnii plantations, stressed by flooding and weed competition, respectively, are summarized. In all three cases, the stress‐inducing agents reduced canopy growth rates and architecture so that the proportion of leaf tissue damaged by insects increased and the tree’s ability to tolerate this damage decreased. Therefore, alleviating tree stress through improved silvicultural practices or improved site selection techniques may indirectly reduce the impact of insect herbivory. In resource‐limiting environments, an alternative approach may be to plant eucalypt species that although slower growing, are predicted to have better defended foliage. Manipulation of these natural antiherbivore plant strategies are not exclusive of other management approaches, such as the need for routine surveillance of key pest insects or the genetic selection of natural insect resistance and selective chemical control techniques, but should be viewed as an overarching concept for plantation health.  相似文献   

12.
Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts.  相似文献   

13.
植食性昆虫与寄主植物通过协同进化形成了复杂的防御和反防御机制.本文系统综述了昆虫唾液效应子和激发子在植物与昆虫互作中的作用及机理.昆虫取食中释放的唾液激发子被植物识别而激活植物早期免疫反应,昆虫也能从口腔分泌效应子到植物体内抑制免疫;抗性植物则利用抗性(R)蛋白识别昆虫无毒效应子,启动效应子诱导的免疫反应,而昆虫又进化...  相似文献   

14.
媒介昆虫-病毒-植物互作关系复杂多样。虽然相关的研究较多, 然而有关三者互作对于生物入侵的影响还知之甚少。已有证据表明, 寄主植物对病毒的敏感性和对媒介昆虫的适合性、媒介昆虫对寄主的适应能力等因素影响三者互作关系。当寄主植物易感病并且对媒介昆虫的适合性低, 而媒介昆虫对寄主植物的适应能力强时, 媒介昆虫与植物病毒之间很可能建立间接互惠关系, 这种互惠可促进媒介昆虫入侵和病毒病流行。此外, 媒介昆虫与植物病毒之间中性或偏害的互作关系对于外来生物入侵的促进作用也不容忽视。鉴于三者互作对于生物入侵的重要性, 今后需要对不同物种所组成的多种组合进行比较研究, 并采用多种方法揭示互作的生理和分子机制。  相似文献   

15.
王鹏  张龙 《环境昆虫学报》2021,43(3):633-641
植食性昆虫的嗅觉在其选择食物的过程中发挥了重要的作用,它能通过对植物挥发物的感受来定向和定位食物源并产生趋近行为,进而根据特殊的化合物或者多种化合物的特异浓度组合来区分寄主和非寄主植物.在这个过程中,昆虫嗅觉器官上相关的嗅觉感受蛋白被植物挥发物激活,形成特异的嗅觉感受通路,在行为上调控昆虫嗅觉选食的能力.本文主要从植食...  相似文献   

16.
Bruce TJ  Pickett JA 《Phytochemistry》2011,72(13):1605-1611
Volatile plant secondary metabolites are detected by the highly sensitive olfactory system employed by insects to locate suitable plants as hosts and to avoid unsuitable hosts. Perception of these compounds depends on olfactory receptor neurones (ORNs) in sensillae, mostly on the insect antennae, which can recognise individual molecular structures. Perception of blends of plant volatiles plays a pivotal role in host recognition, non-host avoidance and ensuing behavioural responses as different responses can occur to a whole blend compared to individual components. There are emergent properties of blend perception because components of the host blend may not be recognised as host when perceived outside the context of that blend. Often there is redundancy in the composition of blends recognised as host because certain compounds can be substituted by others. Fine spatio-temporal resolution of the synchronous firing of ORNs tuned to specific compounds enables insects to pick out relevant host odour cues against high background noise and with ephemeral exposure to the volatiles at varying concentrations. This task is challenging as they usually rely on ubiquitous plant volatiles and not those taxonomically characteristic of host plants. However, such an odour coding system has the advantage of providing flexibility; it allows for adaptation to changing environments by alterations in signal processing while maintaining the same peripheral olfactory receptors.  相似文献   

17.
Phytophagous insects may choose host plants based on conditions that enhance offspring performance. However, some insect species may also select plants based on attributes that enhance their own performance regardless of the consequences for offspring survival. An approach evaluating both hypotheses could provide a more comprehensive understanding of the host plant selection by phytophagous insects. In this study, we described the life stages of a Neotropical stink bug, Edessa contermina, co-occurring on Byrsonima verbascifolia plants in a conservation area of the Brazilian Savannah. We also empirically evaluated how food supply, shelter availability and competitors’ density on the host plants affected the densities of nymphs, adults and mating pairs. We identified and described five life stages of E. contermina. The amount of plant resources did not explain the nymph, adult and mating pairs’ density. However, adults and mating pairs chose plants with a low density of nymphs, probably because egg laying on the host plants with a high density of competitors may negatively affect offspring performance.  相似文献   

18.
19.
Industrialisation has elevated atmospheric levels of CO2 from original 280 ppm to current levels at 400 ppm, which is estimated to double by 2050. Although high atmospheric CO2 levels affect insect interactions with host plants, the impact of global change on plant defences in response to insect attack is not completely understood. Recent studies have made advances in elucidating the mechanisms of the effects of high CO2 levels in plant–insect interactions. New studies have proposed that gene regulation and phytohormones regulate resource allocation from photosynthesis to plant defences against insects. Biochemical and molecular studies demonstrated that both defensive hormones jasmonic acid (JA) and ethylene (ET) participate in modulating chemical defences against herbivores in plants grown under elevated CO2 atmosphere rather than changes in C:N ratio. High atmospheric CO2 levels increase vulnerability to insect damage by down‐regulating both inducive and constitutive chemical defences regulated by JA and ET. However, elevated CO2 levels increase the JA antagonistic hormone salicylic acid that increases other chemical defences. How plants grown under elevated CO2 environment allocate primary metabolites from photosynthesis to secondary metabolism would help to understand innate defences and prevent future herbivory in field crops. We present evidence demonstrating that changes in chemical defences in plants grown under elevated CO2 environment are hormonal regulated and reject the C:N hypothesis. In addition, we discuss current knowledge of the mechanisms that regulate plants defences against insects in elevated CO2 atmospheres.  相似文献   

20.
用现代分子生物学方法揭示植物与昆虫的相互关系   总被引:1,自引:0,他引:1  
昆虫与植物之间相互关系的研究由来已久。1 964年Ehrlich和Raven提出了协同进化 (coevo lution) [1 ] 的概念后 ,更大大促进了植物与昆虫相互关系的研究。马世骏高度重视这一领域的研究 ,指出协同进化的观点是研究生物进化的方法论的基础之一[2 ] 。钦俊德对昆虫与植物的关系作了系统的论述和总结[3] 。以往研究昆虫与植物之间的相互关系 ,主要依靠分析昆虫的习性与相关植物的外部形态和内含次生物质之间的关系 ,辅以数学手段及计算机工具来进行 ,虽然取得了大量卓有成效的成果 ,但都还未能直接从绝大多数生物的遗传…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号