首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Ovine lentivirus (OvLV) is a macrophage‐tropic lentivirus found in many countries that causes interstitial pneumonia, mastitis, arthritis and cachexia in sheep. There is no preventive vaccine and no cure, but breed differences suggest marker‐assisted selective breeding might improve odds of infection and control of OvLV post‐infection. Although variants in TMEM154 have consistent association with odds of infection, no variant in any gene has been associated with host control of OvLV post‐infection in multiple animal sets. Proviral concentration is a live‐animal diagnostic measure of OvLV control post‐infection related to severity of OvLV‐induced lesions. A recent genome‐wide association study identified a region including four zinc finger genes associated with proviral concentration in one Rambouillet flock. To refine this region, we tested additional variants and identified a small insertion/deletion variant near ZNF389 that showed consistent association with proviral concentration in three animal sets (< 0.05). These animal sets contained Rambouillet, Polypay and crossbred sheep from multiple locations and management conditions. Strikingly, one flock had exceptionally high prevalence (>87%, including yearlings) and mean proviral concentration (>950 copies/μg), possibly due to needle sharing. The best estimate of proviral concentration by genotype, obtained from all 1310 OvLV‐positive animals tested, showed insertion homozygotes had less than half the proviral concentration of other genotypes (< 0.0001). Future work will test additional breeds, management conditions and viral subtypes, and identify functional properties of the haplotype this deletion variant tracks. To our knowledge, this is the first genetic variant consistently associated with host control of OvLV post‐infection in multiple sheep flocks.  相似文献   

2.
In all eukaryotic cells, the endoplasmic reticulum (ER) and the mitochondria establish a tight interplay, which is structurally and functionally modulated through a proteinaceous tether formed at specific subdomains of the ER membrane, designated mitochondria-associated membranes or MAMs. The tethering function of the MAMs allows the regulation of lipid synthesis and rapid transmission of calcium (Ca2 +) signals between the ER and mitochondria, which is crucial to shape intracellular Ca2 + signaling and regulate mitochondrial bioenergetics. Research on the molecular characterization and function of MAMs has boomed in the last few years and the list of signaling and structural proteins dynamically associated with the ER–mitochondria contact sites in physiological and pathological conditions, is rapidly increasing along with the realization of an unprecedented complexity underlying the functional role of MAMs. Besides their established role as a signaling hub for Ca2 + and lipid transfer between ER and mitochondria, MAMs have been recently shown to regulate mitochondrial shape and motility, energy metabolism and redox status and to be central to the modulation of various key processes like ER stress, autophagy and inflammasome signaling. In this review we will discuss some emerging cell-autonomous and cell non-autonomous roles of the MAMs in mammalian cells and their relevance for important human diseases. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号