首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Geographical variation of elytra color pattern in two sibling ladybird species, Harmonia yedoensis and H. axyridis (Coleoptera: Coccinellidae), was examined. The two species are distributed sympatrically in central Japan; however, only H. yedoensis and H. axyridis occur in the Ryukyu Islands (southern Japan) and Hokkaido island (northern Japan), respectively. The frequency of elytra color patterns was significantly different between the two species in all sympatric locations and our results were inconsistent with the classical theory on Müllerian mimicry. The most dominant pattern of H. axyridis was the least dominant of H. yedoensis in all sympatric populations. Furthermore, the frequency of the non‐melanic form (red ground color with or without black spots) increased towards the south in H. yedoensis. This tendency was in contrast to the known geographical cline in H. axyridis in which the melanic form (black ground color with red spots) was gradually displaced with the non‐melanic form northwards in the Japanese archipelago. We discuss possible selective factors including predator avoidance, thermal adaptation and reproductive character displacement, all of which might contribute to the maintenance of the color polymorphism in the two Harmonia species.  相似文献   

2.
    
Biological mimicry has served as a salient example of natural selection for over a century, providing us with a dazzling array of very different examples across many unrelated taxa. We provide a conceptual framework that brings together apparently disparate examples of mimicry in a single model for the purpose of comparing how natural selection affects models, mimics and signal receivers across different interactions. We first analyse how model–mimic resemblance likely affects the fitness of models, mimics and receivers across diverse examples. These include classic Batesian and Müllerian butterfly systems, nectarless orchids that mimic Hymenoptera or nectar‐producing plants, caterpillars that mimic inert objects unlikely to be perceived as food, plants that mimic abiotic objects like carrion or dung and aggressive mimicry where predators mimic food items of their own prey. From this, we construct a conceptual framework of the selective forces that form the basis of all mimetic interactions. These interactions between models, mimics and receivers may follow four possible evolutionary pathways in terms of the direction of selection resulting from model–mimic resemblance. Two of these pathways correspond to the selective pressures associated with what is widely regarded as Batesian and Müllerian mimicry. The other two pathways suggest mimetic interactions underpinned by distinct selective pressures that have largely remained unrecognized. Each pathway is characterized by theoretical differences in how model–mimic resemblance influences the direction of selection acting on mimics, models and signal receivers, and the potential for consequent (co)evolutionary relationships between these three protagonists. The final part of this review describes how selective forces generated through model–mimic resemblance can be opposed by the basic ecology of interacting organisms and how those forces may affect the symmetry, strength and likelihood of (co)evolution between the three protagonists within the confines of the four broad evolutionary possibilities. We provide a clear and pragmatic visualization of selection pressures that portrays how different mimicry types may evolve. This conceptual framework provides clarity on how different selective forces acting on mimics, models and receivers are likely to interact and ultimately shape the evolutionary pathways taken by mimetic interactions, as well as the constraints inherent within these interactions.  相似文献   

3.
    
Interspecific social dominance mimicry (ISDM) is a proposed form of social parasitism in which a subordinate species evolves to mimic and deceive a dominant ecological competitor in order to avoid attack by the dominant, model species. The evolutionary plausibility of ISDM has been established previously by the Hairy‐Downy game (Prum & Samuelson). Psychophysical models of avian visual acuity support the plausibility of visual ISDM at distances ~>2–3 m for non‐raptorial birds, and ~>20 m for raptors. Fifty phylogenetically independent examples of avian ISDM involving 60 model and 93 mimic species, subspecies, and morphs from 30 families are proposed and reviewed. Patterns of size differences, phylogeny, and coevolutionary radiation generally support the predictions of ISDM. Mimics average 56–58% of the body mass of the proposed model species. Mimics may achieve a large potential deceptive social advantage with <20% reduction in linear body size, which is well within the range of plausible, visual size confusion. Several, multispecies mimicry complexes are proposed (e.g. kiskadee‐type flycatchers) which may coevolve through hierarchical variation in the deceptive benefits, similar to Müllerian mimicry. ISDM in birds should be tested further with phylogenetic, ecological, and experimental investigations of convergent similarity in appearance, ecological competition, and aggressive social interactions between sympatric species. Evolutionary explanations of mimicry must consider the possibility that mimics evolve to deceive model species themselves. © 2014 The Linnean Society of London  相似文献   

4.
    
Hybrid zones, where distinct populations meet and interbreed, give insight into how differences between populations are maintained despite gene flow. Studying clines in genetic loci and adaptive traits across hybrid zones is a powerful method for understanding how selection drives differentiation within a single species, but can also be used to compare parallel divergence in different species responding to a common selective pressure. Here, we study parallel divergence of wing colouration in the butterflies Heliconius erato and H. melpomene, which are distantly related Müllerian mimics which show parallel geographic variation in both discrete variation in pigmentation, and quantitative variation in structural colour. Using geographic cline analysis, we show that clines in these traits are positioned in roughly the same geographic region for both species, which is consistent with direct selection for mimicry. However, the width of the clines varies markedly between species. This difference is explained in part by variation in the strength of selection acting on colour traits within each species, but may also be influenced by differences in the dispersal rate and total strength of selection against hybrids between the species. Genotyping‐by‐sequencing also revealed weaker population structure in H. melpomene, suggesting the hybrid zones may have evolved differently in each species, which may also contribute to the patterns of phenotypic divergence in this system. Overall, we conclude that multiple factors are needed to explain patterns of clinal variation within and between these species, although mimicry has probably played a central role.  相似文献   

5.
David B. Ritland 《Oecologia》1991,88(1):102-108
Summary Understanding the dynamics of defensive mimicry requires accurately characterizing the comparative palatability of putative models and mimics. The Florida viceroy butterfly (Limenitis archippus floridensis) is traditionally considered a palatable Batesian mimic of the purportedly distasteful Florida queen (Danaus gilippus berenice). I re-evaluated this established hypothesis by directly assessing palatability of viceroys and queens to red-winged blackbirds in a laboratory experiment. Representative Florida viceroys were surprisingly unpalatable to red-wings; only 40% of viceroy abdomens were entirely eaten (compared to 98% of control butterfly abdomens), and nearly one-third were immediately tasterejected after a single peck. In fact, the viceroys were significantly more unpalatable than representative Florida queens, of which 65% were eaten and 14% taste-rejected. Thus, viceroys and queens from the sampled populations exemplify Müllerian rather than Batesian mimicry, and the viceroy appears to be the stronger model. These findings prompt a reassessment of the ecological and evolutionary dynamics of this classic mimicry relationship.  相似文献   

6.
    
Summary: Chelicerates, which include spiders, ticks, mites, scorpions, and horseshoe crabs, are members of the phylum Arthropoda. In recent years, several molecular experimental studies of chelicerates have examined the embryology of spiders; however, the embryology of other groups, such as ticks (Acari: Parasitiformes), has been largely neglected. Ticks and mites are believed to constitute a monophyletic group, the Acari. Due to their blood‐sucking activities, ticks are also known to be vectors of several diseases. In this study, we analyzed the embryonic development of the cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). First, we developed an embryonic staging system consisting of 14 embryonic stages. Second, histological analysis and antibody staining unexpectedly revealed the presence of a population of tick cells with similar characteristics to the spider cumulus. Cumulus cell populations also exist in other chelicerates; these cells are responsible for the breaking of radial symmetry through bone morphogenetic protein signaling. Third, it was determined that the posterior (opisthosomal) embryonic region of R. microplus is segmented. Finally, we identified the presence of a transient ventral midline furrow and the formation and regression of a fourth leg pair; these features may be regarded as hallmarks of late tick embryogenesis. Importantly, most of the aforementioned features are absent from mite embryos, suggesting that mites and ticks do not constitute a monophyletic group or that mites have lost these features. Taken together, our findings provide fundamental common ground for improving knowledge regarding tick embryonic development, thereby facilitating the establishment of a new chelicerate model system. genesis 51:803–818. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Although much attention has been paid to the role of stabilizing selection, empirical analyses testing the role of developmental constraints in evolutionary stasis remain rare, particularly for plants. This topic is studied here with a focus on the evolution of a pollen ontogenetic feature, the last points of callose deposition (LPCD) pattern, involved in the determination of an adaptive morphological pollen character (aperture pattern). The LPCD pattern exhibits a low level of evolution in eudicots, as compared to the evolution observed in monocots. Stasis in this pattern might be explained by developmental constraints expressed during male meiosis (microsporogenesis) or by selective pressures expressed through the adaptive role of the aperture pattern. Here, we demonstrate that the LPCD pattern is conserved in Euphorbiaceae s.s. and that this conservatism is primarily due to selective pressures. A phylogenetic association was found between the putative removal of selective pressures on pollen morphology after the origin of inaperturate pollen, and the appearance of variation in microsporogenesis and in the resulting LPCD pattern, suggesting that stasis was due to these selective pressures. However, even in a neutral context, variation in microsporogenesis was biased. This should therefore favour the appearance of some developmental and morphological phenotypes rather than others.  相似文献   

8.
    
Hydra are remarkable because they are immortal. Much of immortality can be ascribed to the asexual mode of reproduction by budding, which requires a tissue consisting of stem cells with continuous self‐renewal capacity. Emerging novel technologies and the availability of genomic resources enable for the first time to analyse these cells in vivo. Stem cell differentiation in Hydra is governed through the coordinated actions of conserved signaling pathways. Studies of stem cells in Hydra, therefore, promise critical insights of general relevance into stem cell biology including cellular senescence, lineage programming and reprogramming, the role of extrinsic signals in fate determination and tissue homeostasis, and the evolutionary origin of these cells. With these new facts as a backdrop, this review traces the history of studying stem cells in Hydra and offers a view of what the future may hold.  相似文献   

9.
    
Species richness varies among clades, yet the drivers of diversification creating this variation remain poorly understood. While abiotic factors likely drive some of the variation in species richness, ecological interactions may also contribute. Here, we examine one class of potential contributors to species richness variation that is particularly poorly understood: mutualistic interactions. We aim to elucidate large‐scale patterns of diversification mediated by mutualistic interactions using a spatially explicit population‐based model. We focus on mutualistic Müllerian mimicry between conspicuous toxic prey species, where convergence in color patterns emerges from predators' learning process. To investigate the effects of Müllerian mimicry on species diversification, we assume that some speciation events stem from shifts in ecological niches, and can also be associated with shift in mimetic color pattern. Through the emergence of spatial mosaics of mimetic color patterns, Müllerian mimicry constrains the geographical distribution of species and allows different species occupying similar ecological niches to exist simultaneously in different regions. Müllerian mimicry and the resulting spatial segregation of mimetic color patterns thus generate more balanced phylogenetic trees and increase overall species diversity. Our study sheds light on complex effects of Müllerian mimicry on ecological, spatial, and phylogenetic diversification.  相似文献   

10.
11.
    
The evolution of mimicry in similarly defended prey is well described by the Müllerian mimicry theory, which predicts the convergence of warning patterns in order to gain the most protection from predators. However, despite this prediction, we can find great diversity of color patterns among Müllerian mimics such as Heliconius butterflies in the neotropics. Furthermore, some species have evolved the ability to maintain multiple distinct warning patterns in single populations, a phenomenon known as polymorphic mimicry. The adaptive benefit of these polymorphisms is questionable since variation from the most common warning patterns is expected to be disadvantageous as novel signals are punished by predators naive to them. In this study, we use artificial butterfly models throughout Central and South America to characterize the selective pressures maintaining polymorphic mimicry in Heliconius doris. Our results highlight the complexity of positive frequency‐dependent selection, the principal selective pressure driving convergence among Müllerian mimics, and its impacts on interspecific variation of mimetic warning coloration. We further show how this selection regime can both limit and facilitate the diversification of mimetic traits.  相似文献   

12.
13.
The origin of the notochord is one of the key remaining mysteries of our evolutionary ancestry. Here, we present a multi‐level comparison of the chordate notochord to the axochord, a paired axial muscle spanning the ventral midline of annelid worms and other invertebrates. At the cellular level, comparative molecular profiling in the marine annelids P. dumerilii and C. teleta reveals expression of similar, specific gene sets in presumptive axochordal and notochordal cells. These cells also occupy corresponding positions in a conserved anatomical topology and undergo similar morphogenetic movements. At the organ level, a detailed comparison of bilaterian musculatures reveals that most phyla form axochord‐like muscles, suggesting that such a muscle was already present in urbilaterian ancestors. Integrating comparative evidence at the cell and organ level, we propose that the notochord evolved by modification of a ventromedian muscle followed by the assembly of an axial complex supporting swimming in vertebrate ancestors.  相似文献   

14.
    
The parasphenoid is located in the cranium of many vertebrates. When present, it is always an unpaired, dermal bone. While most basal vertebrates have a parasphenoid, most placental mammals lack this element and have an unpaired, dermal vomer in a similar position (i.e. associated with the same bones) and with a similar function. As such, the parasphenoid and the vomer were considered homologous by some early twentieth century researchers. However, others questioned this homology based on comparisons between mammals and reptiles. Here we investigate the parasphenoid bone across the major vertebrate lineages (amphibians, reptiles, mammals and teleosts) including both developmental and evolutionary aspects, which until now have not been considered together. We find that within all the major vertebrate lineages there are organisms that possess a parasphenoid and a vomer, while the parasphenoid is absent within caecilians and most placental mammals. Based on our assessment and Patterson's conjunction tests, we conclude that the non‐mammalian parasphenoid and the vomer in mammals cannot be considered homologous. Additionally, the parasphenoid is likely homologous between sarcopterygian and actinopterygian lineages. This research attempts to resolve the issue of the parasphenoid homology and highlights where gaps in our knowledge are still present.  相似文献   

15.
    
Despite rampant colour pattern diversity in South America, Heliconius erato exhibits a ‘postman’ wing pattern throughout most of Central America. We examined genetic variation across the range of H. erato, including dense sampling in Central America, and discovered a deep genetic break, centred on the mountain range that runs through Costa Rica. This break is characterized by a novel mitochondrial lineage, which is nearly fixed in northern Central America, that branches basal to all previously described mitochondrial diversity in the species. Strong genetic differentiation also appears in Z‐linked and autosomal markers, and it is further associated with a distinct, but subtle, shift in wing pattern phenotype. Comparison of clines in wing phenotype, mtDNA and nuclear markers indicate they are all centred on the mountains dividing Costa Rica, but that cline width differs among data sets. Phylogeographical analyses, accounting for this new diversity, rewrite our understanding of mimicry evolution in this system. For instance, these results suggest that H. erato originated west of the Andes, perhaps in Central America, and as many as 1 million years before its co‐mimic, H. melpomene. Overall our data indicate that neutral genetic markers and colour pattern loci are congruent and converge on the same hypothesis—H. erato originated in northwest South America or Central America with a ‘postman’ phenotype and then radiated into the wealth of colour patterns present today.  相似文献   

16.
  总被引:2,自引:0,他引:2  
  相似文献   

17.
    
We describe the morphology, histology, and histochemical characteristics of the uropygial gland (UG) of the monk parakeet Myiopsitta monachus. The UG has a heart‐shape external appearance and adenomers extensively branched with a convoluted path, covered by a stratified epithelium formed by different cellular strata and divided into three zones (based on the epithelial height and lumen width), a cylindrical papilla with an internal structure of delicate type and two excretory pores surrounded by a feather tuft. Histochemical and lectin‐histochemical techniques performed showed positivity against PAS, AB pH 2.5, AB‐PAS, and some lectines, likely related to the granivorous feeding habits. Also, we describe the morphogenesis of the UG of the monk parakeet, which appears at embryological stage 34 as a pair of ectodermal invaginations. Heterochronic events in the onset development of the UG when compared with other birds could be recognized. Finally, to examine the phylogenetic occurrence of the UG within the Psittaciformes and infer its evolutionary history, we mapped its presence/absence over a molecular phylogeny. The reconstruction of the characters states at ancestral nodes revealed that the presence of the UG was the plesiomorphic feature for Psittaciformes and its loss evolved independently more than once.  相似文献   

18.
19.
    
Development introduces structured correlations among traits that may constrain or bias the distribution of phenotypes produced. Moreover, when suitable heritable variation exists, natural selection may alter such constraints and correlations, affecting the phenotypic variation available to subsequent selection. However, exactly how the distribution of phenotypes produced by complex developmental systems can be shaped by past selective environments is poorly understood. Here we investigate the evolution of a network of recurrent nonlinear ontogenetic interactions, such as a gene regulation network, in various selective scenarios. We find that evolved networks of this type can exhibit several phenomena that are familiar in cognitive learning systems. These include formation of a distributed associative memory that can “store” and “recall” multiple phenotypes that have been selected in the past, recreate complete adult phenotypic patterns accurately from partial or corrupted embryonic phenotypes, and “generalize” (by exploiting evolved developmental modules) to produce new combinations of phenotypic features. We show that these surprising behaviors follow from an equivalence between the action of natural selection on phenotypic correlations and associative learning, well‐understood in the context of neural networks. This helps to explain how development facilitates the evolution of high‐fitness phenotypes and how this ability changes over evolutionary time.  相似文献   

20.
    
Abstract The origin of morphological and ecological novelties is a long‐standing problem in evolutionary biology. Understanding these processes requires investigation from both the development and evolution standpoints, which promotes a new research field called “evolutionary developmental biology” (evo‐devo). The fundamental mechanism for the origin of a novel structure may involve heterotopy, heterochrony, ectopic expression, or loss of an existing regulatory factor. Accordingly, the morphological and ecological traits controlled by the regulatory genes may be gained, lost, or regained during evolution. Floral morphological novelties, for example, include homeotic alterations (related to organ identity), symmetric diversity, and changes in the size and morphology of the floral organs. These gains and losses can potentially arise through modification of the existing regulatory networks. Here, we review current knowledge concerning the origin of novel floral structures, such as “evolutionary homeotic mutated flowers”, floral symmetry in various plant species, and inflated calyx syndrome (ICS) within Solanaceae. Functional evo‐devo of the morphological novelties is a central theme of plant evolutionary biology. In addition, the discussion is extended to consider agronomic or domestication‐related traits, including the type, size, and morphology of fruits (berries), within Solanaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号