首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An attempt was made in the present study to express mouse tyrosinase cDNAs fused with the authentic genomic 5' non-coding flanking sequence in cultured albino melanocytes. One of the cDNA sequences, which expressed successfully and produced melanin pigments, was analyzed with respect to deduced amino acid sequence. Sequencing of the tyrosinase genomic gene revealed the existence of several sets of a characteristic structure which consists of a chain of two successive stem structures, CCAAT-homology and TATA box at its 5' non-coding region. It seems possible that this region represents the regulatory element of the tyrosinase gene. Unusually long GA cluster at 5' upstream region was also found.  相似文献   

3.
Comparison analysis of the sequences of the mouse and human genomes has proven a powerful approach in identifying functional regulatory elements within the non-coding regions that are conserved through evolution between homologous mammalian loci. Here, we applied computational analysis to identify regions of homology in the 5' upstream sequences of the human tyrosinase gene, similar to the locus control region (LCR) of the mouse tyrosinase gene, located at -15 kb. We detected several stretches of homology within the first 30 kb 5' tyrosinase gene upstream sequences of both species that include the proximal promoter sequences, the genomic region surrounding the mouse LCR, and further upstream segments. We cloned and sequenced a 5' upstream regulatory sequence found between -8 and -10 kb of the human tyrosinase locus (termed h5'URS) homologous to the mouse LCR sequences, and confirmed the presence of putative binding sites at -9 kb, homologous to those described in the mouse tyrosinase LCR core. Finally, we functionally validated the presence of a tissue-specific enhancer in the h5'URS by transient transfection analysis in human and mouse cells, as compared with homologous DNA sequences from the mouse tyrosinase locus. Future experiments in cells and transgenic animals will help us to understand the in vivo relevance of this newly described h5'URS sequence as a potentially important regulatory element for the correct expression of the human tyrosinase gene.  相似文献   

4.
In vertebrates, melanin production is restricted to pigment cells. This cell type-specific melanogenesis is considered to involve cell type-specific expression of the tyrosinase gene. Recently, there have been several reports that sequences in the 5’ flanking region of the mouse tyrosinase gene are responsible for cell type-specific expression of the transgene in mice. As the first step in the study of the evolution of the regulatory mechanisms for tyrosinase gene function in vertebrates, we constructed a fused gene, hg-Tyrs-J which includes a 1.0-kb 5’ flanking sequence of the human tyrosinase gene fused with mouse tyrosinase cDNA. By introducing the fused gene into fertilized eggs of albino mice, we obtained two mice that exhibited pigmentation in the skin and eyes and established a transgenic line from one of them. Further analyses revealed that the transgene was expressed cell type-specifically in these transgenic mice. We conclude, therefore, that the 1.0 kb 5’ upstream region of the human tyrosinase gene contains conserved cis-elements essential for cell type-specific expression of the tyrosinase genes in mice and humans. Results of our study may provide a clue to elucidate the evolutionary process of regulatory mechanisms of the tyrosinase gene.  相似文献   

5.
6.
In Saccharomyces cerevisiae the expression of the cargB gene (coding for ornithine aminotransferase) is submitted to dual regulation: an induction by allophanate and a specific induction process by arginine. We have determined the nucleotide sequence of the cargB gene along with its 5' region. The coding portion of the gene encodes a protein of 423 amino acid residues with a calculated Mr value of 46049. To characterize further the regulatory mechanisms modulating the expression of the gene we have analyzed fusions of several fragments of the 5' non-coding region to lacZ, compared the 5' sequences of the cargA (coding for arginase) and cargB coregulated genes and determined the nature of two constitutive cis-dominant mutations affecting the arginine control. These approaches allowed us to define three domains in the 5' non-coding region. The upstream one is implicated in the induction by allophanate. The two other domains are involved in the specific control by arginine; the target of the ARGR gene products, that mediate a positive regulation by arginine, lies upstream of another site where a repression by the CARGRI molecule occurs. The constitutive cargB+O- mutations are located in this repressor domain. The 5' non-coding region of cargA presents the same two-domain organization. These two domains contain three sequences homologous to the cargA and cargB 5' regions.  相似文献   

7.
8.
9.
10.
Comparison analysis of the sequences of the mouse and human genomes has proven a powerful approach in identifying functional regulatory elements within the non‐coding regions that are conserved through evolution between homologous mammalian loci. Here, we applied computational analysis to identify regions of homology in the 5′ upstream sequences of the human tyrosinase gene, similar to the locus control region (LCR) of the mouse tyrosinase gene, located at ?15 kb. We detected several stretches of homology within the first 30 kb 5′ tyrosinase gene upstream sequences of both species that include the proximal promoter sequences, the genomic region surrounding the mouse LCR, and further upstream segments. We cloned and sequenced a 5′ upstream regulatory sequence found between ?8 and ?10 kb of the human tyrosinase locus (termed h5′URS) homologous to the mouse LCR sequences, and confirmed the presence of putative binding sites at ?9 kb, homologous to those described in the mouse tyrosinase LCR core. Finally, we functionally validated the presence of a tissue‐specific enhancer in the h5′URS by transient transfection analysis in human and mouse cells, as compared with homologous DNA sequences from the mouse tyrosinase locus. Future experiments in cells and transgenic animals will help us to understand the in vivo relevance of this newly described h5′URS sequence as a potentially important regulatory element for the correct expression of the human tyrosinase gene.  相似文献   

11.
We introduced a mouse tyrosinase minigene, mg-Tyrs-J, in which the authentic genomic 5' non-coding flanking sequence was fused to a mouse tyrosinase cDNA, into fertilized egges of albino mice. Of the 25 animals that developed from the injected eggs, four mice exhibited pigmented hair and eyes. Histological analysis of the transgenic mice revealed that the melanogenesis was restricted to hair bulbs and eyes. These results suggest that this minigene encodes active tyrosinase protein and that its 5' flanking region contains the sequences regulating expression of mouse tyrosinase gene. This is the first report of a successful expression of tyrosinase gene and of pigment production in transgenic mice.  相似文献   

12.
Newly developed genome-editing tools, such as the clustered regularly interspaced short palindromic repeat (CRISPR)–Cas9 system, allow simple and rapid genetic modification in most model organisms and human cell lines. Here, we report the production and analysis of mice carrying the inactivation via deletion of a genomic insulator, a key non-coding regulatory DNA element found 5′ upstream of the mouse tyrosinase (Tyr) gene. Targeting sequences flanking this boundary in mouse fertilized eggs resulted in the efficient deletion or inversion of large intervening DNA fragments delineated by the RNA guides. The resulting genome-edited mice showed a dramatic decrease in Tyr gene expression as inferred from the evident decrease of coat pigmentation, thus supporting the functionality of this boundary sequence in vivo, at the endogenous locus. Several potential off-targets bearing sequence similarity with each of the two RNA guides used were analyzed and found to be largely intact. This study reports how non-coding DNA elements, even if located in repeat-rich genomic sequences, can be efficiently and functionally evaluated in vivo and, furthermore, it illustrates how the regulatory elements described by the ENCODE and EPIGENOME projects, in the mouse and human genomes, can be systematically validated.  相似文献   

13.
14.
15.
16.
The Sgs-4 glue protein gene of Drosophila is expressed only in third-instar larval salivary glands. Previous work suggests that a regulatory region lies 5' and remote to the gene, as indicated by a region of tissue-specific DNase I hypersensitivity and by underproducing mutants with DNA lesions in the hypersensitive region. Here we demonstrate by germ line transformation of cloned fragments containing Sgs-4 that the sequences between 840 bp 5' and 130 bp 3' to the gene are sufficient for Sgs-4 activity. When 5' sequence was removed to -392, activity was eliminated, thereby verifying the existence of essential sequences far upstream. Fragments that are active include, in addition to the capacity for normal levels of expression, three other cis-acting regulatory activities: developmental timing, tissue specificity, and dosage compensation. In contrast, the fragments tested did not specify formation of the puff with which Sgs-4 is normally associated. As shown by chromosomal rearrangements, the region required for puffing is limited to 16-19 kb surrounding the gene.  相似文献   

17.
Structure and expression of mouse apolipoprotein E gene   总被引:5,自引:0,他引:5  
The mouse apolipoprotein E gene was isolated from a genomic library by screening with a cDNA probe. DNA including apolipoprotein E gene plus segments 2.5 kilobases upstream and 0.3 kilobase downstream of the coding region was transfected into NIH3T3 cells. The cells expressed the same-size apolipoprotein E mRNA and protein as those produced by mouse endogenously. The nucleotide sequence of the gene plus 5' and 3' flanking regions (one kilobase each) was determined. The sequence of the mouse apoliprotein E gene was highly homologous to that of the rat gene, not only in the coding regions but also in the non-coding and intron regions. The mouse and the human apolipoprotein E genes were homologous in the 5' proximal flanking region up to about 200 nucleotides as well as in the four exons. This proximal region was highly conserved for the genes of mouse, rat and human; the relative positions of the "TATA box" and the two copies of "GC box" were identical.  相似文献   

18.
The regulation of the mouse tyrosinase gene expression is controlled by a highly conserved element at -100 bp, the M-box, and an enhancer at -12 kb. In most vertebrates, the length of intergenic sequences makes it difficult to analyze the whole gene and the complete regulatory region. We took advantage of the compact Fugu genome to identify regulatory regions involved in pigment cell-specific expression. We isolated the Fugu tyrosinase gene, and identified putative cis-acting regulatory elements within the promoter. We then asked whether the Fugu promoter sequence functions in mouse pigment cells. We showed that E11.5 transgenic embryos bearing 6 kb or 3 kb of Fugu tyrosinase 5' sequence fused to the reporter gene lacZ revealed melanoblast and RPE-specific expression. This is the first evidence that the tyrosinase promoter is active at midgestation in melanoblasts, long before the onset of pigmentation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号