首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Special occluding junctions between Sertoli cells near the base of the seminiferous epithelium are the structural basis of the blood-testis permeability barrier. In micrographs of thin sections, multiple punctate pentalaminar contacts between apposed membranes are observed in the junctional regions.In freeze-fractured mature testis, the junctional membranes exhibit up to 40 parallel circumferentially oriented rows of intramembrane particles preferentially associated with the B-fracture face, but with complementary shallow grooves on the A-face. Short rows of particles may remain with the A-face resulting in discontinuities in the B-face particle rows. In addition, elongate aggregations of particles of uniform size (~70 A) arranged in one or more closely packed rows are occasionally found adjacent to the linear depressions on the A-face of the Sertoli junction. These are interpreted as atypical gap junctions.In immature testis, occluding junctions are absent but typical gap junctions are common. These gradually disappear. In the second postnatal week, linear arrays of particles appear on the B-face. Initially meandering and highly variable in direction, these gradually adopt a consistent orientation parallel to the cell base. The establishment of the blood-testis barrier appears to be correlated with this reorganization of the intramembrane particle rows. Sertoli junctions were shown to be resistant to hypertonic solutions that rapidly dissociate junctions of other epithelia.Sertoli junctions thus differ from other occluding junctions in their (1) basal location, (2) large number of parallel particle rows, (3) absence of anastomosis between rows, (4) preferential association of the particles with the B-face, (5) intercalation of atypical gap junctions, (6) unusual resistance to dissociation by hypertonic solutions.  相似文献   

2.
Freeze-fracture analysis of the neural connections in the outer plexiform layer of the retina of primates (Macaca mulatta and Macaca arctoides) demonstrates a remarkable diversity in the internal structure of the synaptic membranes. In the invaginating synapses of cone pedicles, the plasma membrane of the photoreceptor ending contains an aggregate of A-face particles, a hexagonal array of synaptic vesicle sites, and rows of coated vesicle sites, which are deployed in sequence from apex to base of the synaptic ridge. The horizontal cell dendrites lack vesicle sites and have two aggregates of intramembrane A-face particles, one at the interface with the apex of the synaptic ridge, the other opposite the tip of the invaginating midget bipolar dendrite. Furthermore, the horizontal cell dendrites are interconnected by a novel type of specialized junction, characterized by: (a) enlarged intercellular cleft, bisected by a dense plate and traversed by uniformly spaced crossbars; (b) symmetrical arrays of B-face particles arranged in parallel rows within the junctional membranes; and (c) a layer of dense material on the cytoplasmic surface of the membranes. The plasmalemma of the invaginating midget bipolar dendrite is unspecialized. At the contact region between the basal surface of cone pedicles and the dendrites of the flat midget and diffuse cone bipolar cells, the pedicle membrane has moderately clustered A-face particles, but no vesicle sites, whereas the adjoining membrane of the bipolar dendrites contains an aggregate of B-face particles. The invaginating synapse of rod spherules differs from that of cone pedicles, because the membrane of the axonal endings of the horizontal cells only has an A-face particle aggregate opposite the apex of the synaptic ridge. Specialized junctions between horizontal cell processes, characterized by symmetrical arrays of intramembrane B-face particles, are also present in the neuropil underlying the photoreceptor endings. Small gap junctions connect the processes of the horizontal cells; other gap junctions probably connect the bipolar cell dendrites which make contact with each cone pedicle. Most of the junctional specializations typical of the primate outer plexiform layer are also found in the rabbit retina. The fact that specialized contacts between different types of neurons interacting in the outer plexiform layer have specific arrangements of intramembrane particles strongly suggests that the internal structure of the synaptic membranes is intimately correlated with synaptic function.  相似文献   

3.
Intercellular junctions which are similar in ultrastructure and protein composition to typical desmosomes have so far only been found in epithelial cells and in heart tissue, specifically in the intercalated disks of cardiac myocytes and at cell boundaries between Purkinje fiber cells. In epithelial cells the cytoplasmic side of desmosomes, the 'desmosomal plaque', represents a specific attachment structure for the anchorage of intermediate filaments (IF) of the cytokeratin type. Cardiac myocytes do not contain cytokeratin filaments. In primary cultures of rat cardiac myocytes, we have examined by immunofluorescence and electron microscopy, using single and double label techniques, whether other types of IF are attached to the desmosomal plaques of the heart. Antibodies to desmoplakin, the major protein of the desmosomal plaque, have been used to label specifically the desmosomal plaques. It is shown that the desmoplakin-containing structures are often associated with IF stained by antibodies to desmin, i.e., the characteristic type of IF present in these cells. Like cytokeratin filaments in epithelial cells, desmin filaments attach laterally to the desmosomal plaque. They also remain attached to these plaques after endocytotic internalization of desmosomal domains by treatment of the cells with EGTA. These desmin filaments do not appear to attach to junctions of the fascia adherens type and to nexuses (gap junctions). These observations show that anchorage at desmosomal plaques is not restricted to IF of the cytokeratin type and that IF composed of either cytokeratin or desmin, specifically attach, in a lateral fashion, to desmoplakin-containing regions of the plasma membrane. We conclude that special domains exist in these two IF proteins that are involved in binding to the desmosomal plaque.  相似文献   

4.
Isolation of the intercellular glycoproteins of desmosomes   总被引:45,自引:31,他引:14       下载免费PDF全文
To characterize the desmosome components that mediate intercellular adhesion and cytoskeletal-plasma membrane attachment, we prepared whole desmosomes and isolated desmosomal intercellular regions (desmosomal "cores") from the living cell layers of bovine muzzle epidermis. The tissue was disrupted in a nonionic detergent at low pH, sonicated, and the insoluble residue fractionated by differential centrifugation and metrizamide gradient centrifugation. Transmission electron microscopic analyses reveal that a fraction obtained after differential centrifugation is greatly enriched in whole desmosomes that possess intracellular plaques. Metrizamide gradient centrifugation removes most of the plaque material, leaving the intercellular components and the adjoining plasma membranes. Sodium dodecyl sulfate polyacrylamide gel electrophoresis coupled with methods that reveal carbohydrate-containing moieties on gels demonstrate that certain proteins present in whole desmosomes are glycosylated. These glycoproteins are specifically and greatly enriched in the desmosome cores of which they are the principal protein constituents, and thus may function as the intercellular adhesive of the desmosome.  相似文献   

5.
The distribution and fate of two junctional complexes, zonula adhaerens and desmosomes, after dissociation of cell-cell contacts is described in MDBK cells. Junctions were split between adjacent cells by treatment with EGTA and proteins associated with the plaques of zonulae adhaerentes and desmosomes were localized by immunological methods. Splitting of these junctions is accompanied by the dislocation of desmosomal plaque protein from the cell periphery and its distribution in punctate arrays over the whole cytoplasm. By contrast, vinculin associated with zonulae adhaerentes is still seen at early times (0.5-1 h) in a conspicuous belt-like structure which, however, is displaced from the plasma membrane. Strong vinculin staining is maintained on leading edges of free cell surfaces. Electron microscopy of EGTA-treated cells exposed to colloidal gold particles reveals the disappearance of junctional structures from the cell periphery and the concomitant appearance of a distinct class of gold particle-containing vesicles which are coated by dense plaques. These vesicle plaques react with antibodies to desmosomal plaque proteins and are associated with filaments of the cytokeratin type. In the same cells, extended dense aggregates are seen which are most probably the membrane-detached vinculin-rich material from the zonula adhaerens . The experiments show that, upon release from their junction-mediated connections with adjacent cells, major proteins associated with the cytoplasmic side of the junctions remain, for several hours, clustered within plaques displaced from the cell surface. While plaque material of adhaerens junctions containing vinculin is recovered in large belt-like aggregates, desmosomal plaque protein remains attached to membrane structures and appears on distinct vesicles endocytotically formed from half-desmosomal equivalents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Isolation and symmetrical splitting of desmosomal structures in 9 M urea   总被引:11,自引:0,他引:11  
A new way of isolating desmosomal structures from various epithelia is described which takes advantage of the unusual resistance of the desmosomal plaque and parts of the desmosomal membrane domain to denaturing agents such as 9 M urea and 5 M guanidinium hydrochloride (Gdn-HCl). The fractions obtained have been examined by electron microscopy and by gel electrophoresis. When cytoskeletal fractions from epithelial cells, notably those from multistratified epithelia such as bovine epidermis or tongue mucosa, are treated with urea or Gdn-HCl most of the cytoskeletal protein, including cytokeratin material, is removed. The desmosomal structures, however, are retained with well preserved plaque organization and desmoglea components and can be harvested by centrifugation. This simple and rapid procedure for the enrichment of desmosomal structures and proteins also express internal desmosomal domains as the result of "splitting" of the desmosome along the midline structure. These split desmosomal halves reveal regular arrays of desmogleal particles of 8 to 15 nm diameter projecting from the membrane surface. Gel electrophoresis of the polypeptides present in these residual structures has shown prominent amounts of desmoplakins I and II as well as components 3 and 5 whereas glycoproteins 4a and 4b are significantly reduced in relation to untreated or citric acid-treated fractions. Using immunoelectron microscopy on desmosomes split in urea we have also demonstrated the specific localization of desmoplakin on the cytoplasmic side. The observations suggest that the architectural components of the desmosome are among the cell structures most resistant to protein-denaturing treatments. The value of this procedure for preparations of desmosomal proteins and for the production of antibodies specifically reacting with internal domains of junctions, i.e., tools that may interfere with cell-to-cell coupling, is discussed.  相似文献   

7.
Using thin sections and freeze-etch replicas the fine structure of the Sertoli cells of the rat testis was investigated after hypophysectomy, testosterone treatment and re-involution. 41 days after hypophysectomy the Sertoli cells contain numerous dense bodies and remnants of degenerating spermatocytes and spermatids. The Sertoli cell junctions are most prominent. The membranes of neighbouring cells are folded into several layers. Freeze-fracture replicas reveal a normal arrangement of Sertoli cell tight junctions with linear array of membrane particles preferentially on the B-face and complementary grooves on the A-face. The geometric pattern of the ridges is varying with respect to the basal, intermediate and apical portions of the lateral Sertoli cell membranes. Since no major changes of the size, distribution and localization of the Sertoli cell junctions were observed in the different experimental groups these junctions, once formed, are inferred to be independent from hypophyseal hormones.  相似文献   

8.
Desmosomes are intercellular adhering junctions characterized by a special structure and certain obligatory constituent proteins such as the cytoplasmic protein, desmoglein. Desmosomal fractions from bovine muzzle epidermis contain, in addition, a major polypeptide of Mr approximately 75,000 ("band 6 protein") which differs from all other desmosomal proteins so far identified by its positive charge (isoelectric at pH approximately 8.5 in the denatured state) and its avidity to bind certain type I cytokeratins under stringent conditions. We purified this protein from bovine muzzle epidermis and raised antibodies to it. Using affinity-purified antibodies, we identified a protein of identical SDS-PAGE mobility and isoelectric pH in all epithelia of higher complexity, including representatives of stratified, complex (pseudostratified) and transitional epithelia as well as benign and malignant human tumors derived from such epithelia. Immunolocalization studies revealed the location of this protein along cell boundaries in stratified and complex epithelia, often resolved into punctate arrays. In some epithelia it seemed to be restricted to certain cell types and layers; in rat cornea, for example, it was only detected in upper strata. Electron microscopic immunolocalization showed that this protein is a component of the desmosomal plaque. However, it was not found in the desmosomes of all simple epithelia examined, in the tumors and cultured cells derived thereof, in myocardiac and Purkinje fiber cells, in arachnoideal cells and meningiomas, and in dendritic reticulum cells of lymphoid tissue, i.e., all cells containing typical desmosomes. The protein was also absent in all nondesmosomal adhering junctions. From these results we conclude that this basic protein is not an obligatory desmosomal plaque constituent but an accessory component specific to the desmosomes of certain kinds of epithelial cells with stratified tissue architecture. This suggests that the Mr 75,000 basic protein does not serve general desmosomal functions but rather cell type-specific ones and that the composition of the desmosomal plaque can be different in different cell types. The possible diagnostic value of this protein as a marker in cell typing is discussed.  相似文献   

9.
Epithelial cells contain complexes of cytokeratin filaments (tonofilaments) with specific domains of the plasma membrane that appear as symmetric junctions, i.e. desmosomes, or as asymmetric hemi-desmosomes. These regions of filament-membrane-attachment are characterized by 14 to 20 nm thick dense plaques (desmosomal plaque). In isolated desmosome-tonofilament complexes or other desmosomal fractions from various stratified squamous epithelia (e.g. bovine muzzle epidermis and tongue mucosa) desmosomal plaque structures are recognized and show a relatively high resistance to various extraction buffers and detergents. Such fractions enriched in desmosomal plaque material are also enriched in two prominent polypeptide bands of apparent molecular weights 250,000 (desmoplakin I) and 215,000 (desmoplakin II) which appear, on two-dimensional gel electrophoresis, as two distinct polypeptides isoelectric near neutral pH. These two polypeptides are present in almost equimolar amounts and each of them appears as a series of isoelectric variants, including some labeled by [32P]phosphate in tissue slices. The two desmoplakin polypeptides are closely related as shown by tryptic peptide map analysis and are different from keratin-like proteins and other major polypeptides of desmosome-rich fractions. Guinea pig antibodies raised against desmoplakins and specific for these proteins do not cross-react with other desmosomal antigen(s) or constituents of other types of junctions. Using desmoplakin antibodies we have identified desmoplakins as the major constituents of the desmosomal plaques present in epithelial and myocardiac cells of diverse species. The significance of this group of cell type-specific membrane-associated cytoskeletal proteins and their possible cytoskeletal functions are discussed.  相似文献   

10.
A unique high molecular weight protein (240,000 mol wt) has been purified from isolated desmosomes of bovine muzzle epidermis, using low-salt extraction at pH 9.5-10.5 and gel-filtration followed by calmodulin-affinity column chromatography. This protein was shown to bind to calmodulin in a Ca2+-dependent manner, so we called it desmocalmin here. Desmocalmin also bound to the reconstituted keratin filaments in vitro in the presence of Mg2+, but not to actin filaments. By use of the antibody raised against the purified desmocalmin, desmocalmin was shown by both immunoelectron and immunofluorescence microscopy to be localized at the desmosomal plaque just beneath the plasma membrane. Judging from its isoelectric point and antigenicity, desmocalmin was clearly distinct from desmoplakins I and II, which were identified in the desmosomal plaque by Mueller and Franke (1983, J. Mol. Biol., 163:647-671). In the low-angle, rotary-shadowing electron microscope, the desmocalmin molecules looked like flexible rods approximately 100-nm long consisting of two polypeptide chains lying side by side. The similar rodlike structures were clearly identified in the freeze-etch replica images of desmosomes. Taken together, these findings indicate that desmocalmin could function as a key protein responsible for the formation of desmosomes in a calmodulin-dependent manner (Trinkaus-Randall, V., and I.K. Gipson, 1984, J. Cell Biol., 98:1565-1571).  相似文献   

11.
Plakophilins (pkp-1, -2, and -3) comprise a family of armadillo-repeat containing proteins that are found in the desmosomal plaque and in the nucleus. Plakophilin-1 is most highly expressed in the suprabasal layers of the epidermis and loss of plakophilin-1 expression results in skin fragility-ectodermal dysplasia syndrome, which is characterized by a reduction in the number and size of desmosomes in the epithelia of affected individuals. To investigate the role of plakophilin-1 during desmosome formation, we fused plakophilin-1 to the hormone-binding domain of the estrogen receptor to create a fusion protein (plakophilin-1/ER) that can be activated in cell culture by the addition of 4-hydroxytamoxifen. When plakophilin-1/ER was expressed in A431 cells it was incorporated into endogenous desmosomes and did not disrupt desmosome formation. A derivative of A431 cells (A431D) do not form desmosomes, even though they express all the components believed to be necessary for desmosome assembly. Expression and activation of plakophilin-1/ER in A431D cells resulted in punctate desmoplakin staining on the cell surface. Co-expression of a classical cadherin (N-cadherin) and plakophilin-1/ER in A431D cells resulted in punctate desmoplakin staining at cell-cell borders. These data suggest that plakophilin-1 can induce assembly of desmosomal components in A431D cells in the absence of a classical cadherin; however a classical cadherin (N-cadherin) is required to direct assembly of desmosomes between adjacent cells. The activatable plakophilin-1/ER system provides a unique culture system to study the assembly of the desmosomal plaque in culture.  相似文献   

12.
Isolated desmosomes from bovine epidermis contain two major polypeptides of mol. wts. 75 000 (D6) and 83 000 (D5) which, like the desmoplakins of mol. wt. greater than 200 000, are associated with the insoluble desmosomal plaque structure. We have characterized these two polypeptides and examined their significance by peptide map comparisons and translation of bovine epidermal mRNA in vitro. Polypeptide D5 is different from polypeptide D6 by its apparent mol. wt., its isoelectric pH (approximately 6.35, whereas D6 is a basic polypeptide isoelectric at pH approximately 8.5) and its peptide map. By all these criteria desmosomal polypeptides D5 and D6 are also different from cytokeratins, desmoplakins and the glycosylated desmosomal proteins. Both polypeptides are synthesized from different mRNAs separable by gel electrophoresis on agarose: mRNA coding for polypeptide D5 is approximately 3500 nucleotides long, that for D6 is significantly shorter (estimated to 3050 nucleotides), and both contain relatively large proportions of non-coding sequences. The translational products of these mRNAs co-migrate, on two-dimensional gel electrophoresis, with the specific polypeptides from bovine epidermis, indicating that they are genuine polypeptides and are not the result of considerable post-translational processing or modification of precursor molecules. The cell and tissue distribution of these two cytoskeletal proteins and possible functions are discussed.  相似文献   

13.
The linkage of the different types of cytoskeletal proteins to cell adhesion structures at the cytoplasmic membrane and the connection of these contact sites to corresponding sites of adjacent cells is a prerequisite for integrity and stability of cells and tissues. The structurally most prominent types of such cell-cell adhesion complexes are the desmosomes (maculae adhaerentes), which are found in all epithelia and certain non-epithelial tissues. As an element of the cytoskeleton, intermediate filaments are connected to the adhesive desmosomal transmembrane proteins by the cytoplasmic desmosomal plaque proteins. At least three different types of proteins are found in the desmosomal plaque, one of which is represented by the plakophilins, a recently described sub-family of sequence-related armadillo-repeat proteins. Consisting of three isoforms, plakophilins (plakophilin 1 to 3, PKP 1 to 3) are located in all desmosomes in a differentiation-dependent manner. While PKP 2 and PKP 3 are part of almost all desmosome-bearing cell types (PKP 2 except for differentiated cells of stratified epithelia and PKP 3 for hepatocytes and cardiomyocytes), PKP 1 is restricted to desmosomes of cells of stratified and complex epithelia. Besides the architectural function that plakophilins seem to fulfill in the desmosomes, at least PKP 1 and 2 are also localized in the nucleus independently of any differentiation-related processes and with an up to now enigmatic function in this compartment. In the following article we want to summarize the current knowledge concerning structure, function and regulation of the plakophilins that has been achieved during the last decade.  相似文献   

14.
Desmosomes isolated from bovine tongue mucosa or muzzle epidermis appeared identical by ultrastructural analyses but had some differences in their polypeptide compositions as determined by SDS-PAGE. These preparations were extracted in 9 M urea, 10 mM Tris-HCl (pH 9), and 25 mM B-mercaptoethanol and then centrifuged at 240,000g for 30 min. The urea-soluble and insoluble fractions were analyzed by SDS-PAGE. The urea soluble fractions of both tongue and muzzle desmosomes were enriched in polypeptides of 240, 210, 81, and 75 kDa and also polypeptides (40 to 70 kDa) that were keratin-like, as determined by immunoblotting analyses with keratin antisera. The urea insoluble fraction of tongue desmosomes contained glycoproteins of 165, 160, 140, 110, and 100 kDa, while this fraction from muzzle contained glycoproteins of 165, 115, and 105 kDa. Ultrastructural examinations of insoluble pellets obtained from urea extracted tongue and muzzle desmosomes showed that most of the components at the cytoplasmic faces of the desmosomes were removed, while the membrane regions of the desmosomes resisted the treatment. The urea soluble proteins were dialyzed against 10 mM Tris-HCl (pH 7.6), and the resulting preparation was pelleted by centrifugation and examined by electron microscopy. Ultrastructural examination of this material revealed that it had assembled into a fibrillar meshwork, similar to the fibrillar region adjacent to the submembranous plaque of isolated desmosomes. Thus, treatment of isolated desmosomes with 9 M urea allowed the fractionation of membrane-associated desmosomal proteins from cytoplasmic desmosomal proteins. A comparison of these fractions from tongue and muzzle indicated that the polypeptide compositions of the desmosomes varied between tissues, especially with respect to the fractions enriched in either glycoproteins or keratin.  相似文献   

15.
Using two monoclonal antibodies described in the preceding paper we determined by immunofluorescence microscopy the distribution of an integral membrane protein of the desmosomal domain, the major glycopolypeptide of Mr 165,000 (bovine muzzle epidermal desmosome band 3; desmoglein) in various normal tissues, tumors and cultured cell lines from several mammalian species. This protein was detected in dotted or streak-like arrays along cell boundary structures which were known to contain non-membrane-integrated desmosomal plaque proteins such as desmoplakins. This is true for epithelial, i.e. cytokeratin-expressing cell types, for the desmin-producing myocardiac and Purkinje fiber cells of the heart, and for certain vimentin-containing cells such as arachnoidal and meningiomal cells and dendritic follicular cells of lymph nodes. However, on the basis of both immunoblot and immunocytochemical reactions, the protein is absent from non-desmosomal adhering junctions, including those devoid of desmoplakin but containing another plaque protein, plakoglobin ("band 5 protein"). We have used these antibodies to localize their epitopes with respect to the cell membrane. By immunoelectron microscopy we found that both epitopes are located in the desmosomal plaques, and this was confirmed by microinjection of purified antibodies into living cultured cells which resulted in labelling of the plaques. From these findings, taken together with previous analyses and localizations of the carbohydrate moieties of this glycoprotein, we conclude that desmoglein is a transmembrane glycoprotein which projects into--and contributes to--the desmosomal plaque structure. This glycoprotein represents a general component of true desmosomes and it is coexpressed with obligatory desmosome-specific plaque proteins such as desmoplakin I. The potential value of this glycoprotein as a desmosomal and cell type marker in histology and tumor diagnosis is discussed.  相似文献   

16.
Exocytosis is clearly shown in freeze-fracture preparations to be the mechanism for neurosecretion granule release from axon endings in the crayfish sinus gland. The cytoplasmic leaflet (A-face) of axon ending membrane is characterized by randomly situated depressions representing invaginations of the axolemma, which are in contact with limiting membranes of neurohormone granules in the subjacent cytoplasm. The extracellular leaflet (B-face) of the axolemma at release sites exhibits complementary volcano-shaped protrusions which are cross-fractures through necks of channels formed by invaginating plasma membrane in contact with underlying neurosecretion granules. Structural variation in B-face protrusions is consistent with a spectrum of exocytotic profiles in various stages of formation, and with granules at different stages of passage out of the endings. Evidence in this study suggests that formation of exocytotic structures may begin by alteration of axon membrane structure at the neurosecretory ending-hemolymph interface prior to contact of the neurohormone granules with the axolemma. Limiting membranes of neurosecretory granules exhibit protrusions which appear to interconnect granules adjacent to release sites and to attach granules to the axolemma. Freeze-fracture is clearly shown to be an invaluable tool for monitoring the degree of exocytosis exhibited by sinus glands under normal conditions and under experimental acceleration of hormone release. This technique is capable therefore, of detecting slight increases in numbers of exocytotic profiles much more quickly and accurately than the examination of random thin sections.  相似文献   

17.
Correlated ultrastructural and biochemical methods were used to identify and localize Concanavalin A (Con A) receptors in the desmosomes of bovine epidermis. Specific carbohydrate residues were labeled with ferritin-Con A in thin sections of tissue embedded in a hydrophilic resin. Quantitative mapping of ferritin distribution in labeled desmosomes revealed that Con A receptors are localized in the intercellular zone and concentrated along the desmosomal midline or central dense stratum. Labeling was almost entirely absent when sections were treated with ferritin-Con A in the presence of 0.1 M α-methyl mannoside, a hapten-inhibitor of Con A. “Whole” desmosomes and desmosomal intercellular regions (desmosomal “cores”) were purified from bovine muzzle epidermis. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis reveals a limited number of major desmosomal protein constituents. Certain of these are glycoproteins and are greatly enriched in the core fraction. Almost all the desmosomal glycoproteins are intensely labeled when electrophoretic gels of whole desmosome or core fractions are exposed to fluorescent Concanavalin A.  相似文献   

18.
Pemphigus vulgaris antigen (PVA) is a member of the desmoglein subfamily of cadherin cell adhesion molecules. Because autoantibodies in this disease cause blisters due to loss of epidermal cell adhesion, and because desmoglein is found in the desmosome cell adhesion junction, we wanted to determine if PVA is also found in desmosomes. By immunofluorescence, PV IgG bound, in a dotted pattern, to the cell surface of cultured human keratinocytes induced to differentiate with calcium, suggesting junctional staining. However, by preembedding, immunogold electron microscopic studies only slight labeling could be detected in desmosomes, presumably because of difficulty in gold penetration of intact desmosomes. We therefore treated the keratinocytes with 0.01% trypsin in 1 mM calcium, conditions known to preserve cadherin antigenicity but that caused slight separation of desmosomes, before immunogold staining. In this case there was extensive labeling of the extracellular part of desmosomes but not of the interdesmosomal cell membrane which was stained with anti-beta 2- microglobulin antibodies. To confirm the specificity of this binding we showed that antibodies raised in rabbits against the extracellular portions of PVA also bound desmosomes in these cultures. In intact mouse epidermis we could also show slight, but specific, immunogold desmosomal labeling with PV IgG. Furthermore, neonatal mice injected with PV IgG affinity purified on PVA showed desmosomal separation with the IgG localized to desmosomal cores. These results indicate that PVA is organized and concentrated within the desmosome where it presumably functions to maintain the integrity of stratifying epithelia.  相似文献   

19.
Desmosomal cadherins constitute the adhesive core of desmosomes. Different desmosomal cadherins are differentially expressed in a tissue-specific as well as differentiation-dependent manner. The skin and the heart are two examples of tissues whose vital functions require the ability to endure mechanical stress, and therefore, rely on the integrity of desmosomal adhesion. When this adhesion is compromised via mutations in genes encoding desmosomal cadherins or associated plaque proteins, both tissues can suffer the consequences. Open questions revolve around whether the resulting phenotypes are solely because of physical disruption of cell adhesion or whether these events are coupled with signaling mechanisms that influence many additional cellular processes. In this review, we focus on new developments in desmosomal adhesion with an emphasis on the skin, hair, and heart.  相似文献   

20.
Abstract

Autoantibodies from patients suffering from the autoimmune blistering skin disease pemphigus can be applied as tools to study desmosomal adhesion. These autoantibodies targeting the desmosomal cadherins desmoglein (Dsg) 1 and Dsg3 cause disruption of desmosomes and loss of intercellular cohesion. Although pemphigus autoantibodies were initially proposed to sterically hinder desmosomes, many groups have shown that they activate signaling pathways which cause disruption of desmosomes and loss of intercellular cohesion by uncoupling the desmosomal plaque from the intermediate filament cytoskeleton and/or by interfering with desmosome turnover. These studies demonstrate that desmogleins serve as receptor molecules to transmit outside-in signaling and demonstrate that desmosomal cadherins have functions in addition to their adhesive properties. Two central molecules regulating cytoskeletal anchorage and desmosome turnover are p38MAPK and PKC. As cytoskeletal uncoupling in turn enhances Dsg3 depletion from desmosomes, both mechanisms reinforce one another in a vicious cycle that compromise the integrity and number of desmosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号