首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ig-binding bacterial proteins also bind proteinase inhibitors   总被引:8,自引:0,他引:8  
Protein G is a streptococcal cell wall protein with separate binding sites for IgG and human serum albumin (HSA). In the present work it was demonstrated that alpha 2-macroglobulin (alpha 2M) and kininogen, two proteinase inhibitors of human plasma, bound to protein G, whereas 23 other human proteins showed no affinity. alpha 2M was found to interact with the IgG-binding domains of protein G, and in excess alpha 2M inhibited IgG binding and vice versa. A synthetic peptide, corresponding to one of the homologous IgG-binding domains of protein G, blocked binding of protein G to alpha 2M. Protein G showed affinity for both native and proteinase complexed alpha 2M but did not bind to the reduced form of alpha 2M, or to the C-terminal domain of the protein known to interact with alpha 2M receptors on macrophages. Binding of protein G to alpha 2M and kininogen did not interfere with their inhibitory activity on proteinases, and the interaction between protein G and the two proteinase inhibitors was not due to proteolytic activity of protein G. The finding that protein G has affinity for proteinase inhibitors was generalized to comprise also other Ig binding bacterial proteins. Thus, alpha 2M and kininogen, were shown to bind both protein A of Staphylococcus aureus and protein L of Peptococcus magnus. The results described above suggest that Ig-binding proteins are involved in proteolytic events, which adds a new and perhaps functional aspect to these molecules.  相似文献   

2.
In recent years, many studies have suggested a direct role for alpha 2-macroglobulin (alpha 2M), a plasma proteinase inhibitor, in growth factor regulation. When coincubated in the presence of either trypsin, pancreatic elastase, human neutrophil elastase, or plasmin, 125I-insulin rapidly formed a complex with alpha 2M which was greater than 80% covalent. The covalent binding was stable to reduction but abolished by competition with beta-aminopropionitrile. Neither native alpha 2M nor alpha 2M pretreated with proteinase or methylamine incorporated 125I-insulin. Experiments utilizing alpha 2M cross-linked with cis-dichlorodiammineplatinum(II) indicated that 125I-insulin must be present during alpha 2M conformational change to covalently bind. A maximum stoichiometry of 4 mol of insulin bound per mole of alpha 2M and the short half-life of the alpha 2M intermediate capable of covalent incorporation were consistent with thiol ester involvement. Protein sequence analysis of unlabeled insulin-alpha 2M complexes, together with results of beta-aminopropionitrile competition, confirmed that insulin incorporation occurs via the same gamma-glutamyl amide linkage responsible for covalent proteinase and methylamine binding to alpha 2M. Although intact insulin apparently incorporated through its sole lysine residue on the B chain, we found that isolated A chain also bound covalently to alpha 2M. Phenyl isothiocyanate derivatization of the N-terminus had no effect on A-chain binding, supporting the possibility of heretofore unreported gamma-glutamyl ester linkages to alpha 2M.  相似文献   

3.
Characterization of thrombin binding to alpha 2-macroglobulin   总被引:1,自引:0,他引:1  
The formation and structural characteristics of the human alpha 2-macroglobulin (alpha 2M)-thrombin complex were studied by intrinsic protein fluorescence, sulfhydryl group titration, electrophoresis in denaturing and nondenaturing polyacrylamide gel systems, and in macromolecular inhibitor assays. The interaction between alpha 2M and thrombin was also assessed by comparison of sodium dodecyl sulfate-gel electrophoretic patterns of peptides produced by Staphylococcus aureus V-8 proteinase digests of denatured alpha 2M-125I-thrombin and alpha 2M-125I-trypsin complexes. In experiments measuring fluorescence changes and sulfhydryl group exposure caused by methylamine, we found that thrombin produced its maximum effects at a mole ratio of approximately 1.3:1 (thrombin:alpha 2M). Measurements of the ability of alpha 2M to bind trypsin after prior reaction with thrombin indicated that thrombin binds rapidly at one site on alpha 2M, but occupies the second site with some difficulty. Intrinsic fluorescence studies of trypsin binding to alpha 2M at pH 5.0, 6.5, and 8.0 not only revealed striking differences in trypsin's behavior over this pH range, but also some similarities between the behavior of thrombin and trypsin not heretofore recognized. Structural studies, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to measure alpha 2M-125I-thrombin covalent complex formation, indicated that covalency reached a maximum at a mole ratio of approximately 1.5:1. At this ratio, only 1 mol of thrombin is bound covalently per mol of alpha 2M. These gel studies and those of proteolytic digests of denatured alpha 2M-125I-trypsin and alpha 2M-125I-thrombin complexes suggest that proteinases form covalent bonds with uncleaved alpha 2M subunits. The sum of our results is consistent with a mechanism of proteinase binding to alpha 2M in which the affinity of the proteinase for alpha 2M during an initial reversible interaction determines its binding ratio to the inhibitor.  相似文献   

4.
The binding of urokinase to human alpha2M (alpha2-macroglobulin) was investigated in comparison with the formation of the equimolar trypsin-alpha2M complex. Experiments were performed by molecular-sieving on Sephadex G-200, subunit conversion by sodium dodecyl sulphate-polyacrylamide-gel electrophoresis after reduction and isoelectric focusing in linear sucrose gradients with ampholytes pH 3.5-10.0. Urokinase activity was determined with alpha-N-acetyl-L-lysine methyl ester and by activation of plasminogen on unheated fibrin plates. alpha2M was determined by single radial immunodiffusion. alpha2M was capable of binding some urokinase by a non-specific type of attachment that could be disrupted by isoelectric focusing but not by gel filtration. The pI of the undissociated trypsin-alpha2M complex was 6.0, and differed from that of the pure alpha2M (5.2-5.4). Likewise the pI of the immunoreactive alpha2M was 5.2 after exposure to urokinase, whereas the dissociated urokinase focused at pI 10.2. This indicated lack of true inhibitor-complex formation, which was also sustained by total absence of subunit conversion. The results are in agreement with our previous findings with pancreatic and urinary kallikreins.  相似文献   

5.
Titration experiments were employed to measure the binding stoichiometry of alpha 2M for trypsin at high and low concentrations of reactants. These titration experiments were performed by measuring the SBTI-resistant trypsin activity and by direct binding measurements using 125I-labeled trypsin. The binding stoichiometry displayed a marked dependence upon protein concentration. At high alpha 2M concentrations (micromolar), 2 mol of trypsin are bound/mol of inhibitor. However, at low alpha 2M concentrations (e.g., 0.5 nM), only 1.3 mol of trypsin were bound/mol of inhibitor. Sequential additions of subsaturating amounts of trypsin to a single aliquot of alpha 2M also resulted in a reduction in the final binding ratio. A model has been formulated to account for these observations. A key element of this model is the observation that purified 1:1 alpha 2M-proteinase complexes are not capable of binding a full mole of additional proteinase [Strickland et al. (1988) Biochemistry 27, 1458-1466]. The model predicts that once the 1:1 alpha 2M-proteinase complex forms, this species undergoes a time-dependent conformational rearrangement to yield a complex with greatly reduced proteinase binding ability. According to this model, the ability of alpha 2M to bind 2 mol of proteinase depends upon the association rate of the second enzyme molecule with the binary (1:1) complex, the enzyme concentration, and the rate of the conformational alteration that occurs once the initial complex forms. Modeling experiments suggest that the magnitude of the rate constant for this conformational change is in the order of 1-2 s-1.  相似文献   

6.
The inhibitory capacity of the alpha-macroglobulins resides in their ability to entrap proteinase molecules and thereby hinder the access of high molecular weight substrates to the proteinase active site. This ability is thought to require at least two alpha-macroglobulin subunits, yet the monomeric alpha-macroglobulin rat alpha 1-inhibitor-3 (alpha 1I3) also inhibits proteinases. We have compared the inhibitory activity of alpha 1I3 with the tetrameric human homolog alpha 2-macroglobulin (alpha 2M), the best known alpha-macroglobulin, in order to determine whether these inhibitors share a common mechanism. alpha 1I3, like human alpha 2M, prevented a wide variety of proteinases from hydrolyzing a high molecular weight substrate but allowed hydrolysis of small substrates. In contrast to human alpha 2M, however, the binding and inhibition of proteinases was dependent on the ability of alpha 1I3 to form covalent cross-links to proteinase lysine residues. Low concentrations of proteinase caused a small amount of dimerization of alpha 1I3, but no difference in inhibition or receptor binding was detected between purified dimers or monomers. Kininogen domains of 22 and 64 kDa were allowed to react with alpha 1I3- or alpha 2M-bound papain to probe the accessibility of the active site of this proteinase. alpha 2M-bound papain was completely protected from reaction with these domains, whereas alpha 1I3-bound papain reacted with them but with affinities several times weaker than uncomplexed papain. Cathepsin G and papain antisera reacted very poorly with the enzymes when they were bound by alpha 1I3, but the protection provided by human alpha 2M was slightly better than the protection offered by the monomeric rat alpha 1I3. Our data indicate that the inhibitory unit of alpha 1I3 is a monomer and that this protein, like the multimeric alpha-macroglobulins, inhibits proteinases by steric hindrance. However, binding of proteinases by alpha 1I3 is dependent on covalent crosslinks, and bound proteinases are more accessible, and therefore less well inhibited, than when bound by the tetrameric homolog alpha 2M. Oligomerization of alpha-macroglobulin subunits during the evolution of this protein family has seemingly resulted in a more efficient inhibitor, and we speculate that alpha 1I3 is analogous to an evolutionary precursor of the tetrameric members of the family exemplified by human alpha 2M.  相似文献   

7.
The cysteine sulfhydryl groups of alpha 2-macroglobulin (alpha 2M) generated upon thrombin complex formation are in contact with the proteinase surface as evidenced by singlet--singlet energy transfer measurements from N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonic acid-labeled thiol functions of alpha 2M to fluorescein isothiocyanate-labeled thrombin. The thrombin-alpha 2M binding is normally covalent, but the presence of hydroxylamine during the reaction leads to the formation of a non-covalent complex. The transfer energy determinations show that the alpha 2M binding sites of thrombin are quite similar, whatever covalent or non-covalent binding occurs.  相似文献   

8.
Three-dimensional electron microscopy reconstructions of native, half-transformed, and transformed alpha2-macroglobulins (alpha2Ms) labeled with a monoclonal Fab Fab offer new insight into the mechanism of its proteinase entrapment. Each alpha2M binds four Fabs, two at either end of its dimeric protomers approximately 145 A apart. In the native structure, the epitopes are near the base of its two chisel-like features, laterally separated by 120 A, whereas in the methylamine-transformed alpha2M, the epitopes are at the base of its four arms, laterally separated by 160 A. Upon thiol ester cleavage, the chisels on the native alpha2M appear to split with a separation and rotation to give the four arm-like extensions on transformed alpha2M. Thus, the receptor binding domains previously enclosed within the chisels are exposed. The labeled structures further indicate that the two protomeric strands that constitute the native and transformed molecules are related and reside one on each side of the major axes of these structures. The half-transformed structure shows that the two Fabs at one end of the molecule have an arrangement similar to those on the native alpha2M, whereas on its transformed end, they have rotated. The rotation is associated with a partial untwisting of the strands and an enlargement of the openings to the cavity. We propose that the enlarged openings permit the entrance of the proteinase. Then cleavage of the remaining bait domains by a second proteinase occurs with its entrance into the cavity. This is followed by a retwisting of the strands to encapsulate the proteinases and expose the receptor binding domains associated with the transformed alpha2M.  相似文献   

9.
Pregnancy zone protein (PZP) was isolated from late pregnancy serum and examined for binding to normal skin fibroblasts in culture. A high-affinity binding site on these cells is demonstrated for PZP reacted with methylamine. Experiments with alpha 2-macroglobulin (alpha 2M) and PZP, both modified by methylamine, showed this receptor to be identical to the previously characterized receptor for alpha 2M-proteinase complexes (Van Leuven, F., Cassiman, J.J., and Van den Berghe, H. (1979) J. Biol. Chem. 254, 5155-5160). With available monoclonal antibodies directed toward alpha 2M and prepared toward PZP, only a limited cross-reaction was observed. We obtained a monoclonal antibody which defines a neo-antigenic site on PZP-methylamine, completely analogous to the monoclonal antibody F2B2, which was previously shown to define a neo-antigenic site on alpha 2M complexes (Marynen, P., Van Leuven, F., Cassiman, J.J., and Van den Berghe, H. (1981) J. Immunol. 127, 1782-1786). These results provide evidence for the homologous function of alpha 2M and PZP as proteinase scavengers. The need for an extra proteinase inhibitor of the alpha 2M-type in pregnancy is discussed. The monoclonal antibodies now available will prove helpful in quantitation and eventually isolation of proteinase complexes of alpha 2M and PZP.  相似文献   

10.
Alpha 2-Macroglobulin (alpha 2M) is a plasma proteinase inhibitor that binds up to 2 mole of proteinase per mole of inhibitor. Proteinase binding or reaction with small primary amines causes a major conformational change in alpha 2M. As a result of this conformational change, a new epitope recognized by monoclonal antibody 7H11D6 is exposed. The association of alpha 2M-proteinase or alpha 2M-methylamine with alpha 2M cellular receptors is prevented by 7H11D6. In this investigation, the binding of 7H11D6 to alpha 2M was studied by electron microscopy. 7H11D6 bound to alpha 2M-methylamine and alpha 2M-trypsin but not to native alpha 2M. The structure of alpha 2M after conformational change resembled the letter "H." 7H11D6 epitopes were identified near the apices of the four arms in the alpha 2M "H" structure. 7H11D6 that was adducted to colloidal gold (7HAu) retained the specificity of the free antibody (binding to alpha 2M-trypsin but not to native alpha 2M). alpha 2M conformational change intermediates prepared by sequential reaction with a protein crosslinker and trypsin also bound 7HAu. These results suggest that a complete alpha 2M conformational change is not necessary for 7H11D6 epitope exposure and may not be required for receptor recognition. 7HAu was used to isolate a preparation consisting primarily of binary alpha 2M-trypsin (1 mole trypsin per mole alpha 2M instead of 2). Structures resembling the letter "H" were most common; however, each field showed some atypical molecules with arms that were compacted instead of thin and elongated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We compared the physicochemical characteristics of alpha 2-macroglobulin (alpha 2M) monomers produced by limited reduction and carboxamidomethylation to those of the naturally occurring monomeric alpha-macroglobulin homologue rat alpha 1-inhibitor 3 (alpha 1 I3). Unlike alpha 1 I3, alpha 2 M monomers fail to inhibit proteolysis of the high molecular weight substrate hide powder azure by trypsin. In contrast to alpha 1 I3, which remains monomeric after reacting with proteinase, alpha 2 M monomers reassociate to higher molecular weight species (dimers, trimers, and tetramers) after reacting with proteinase. Reaction of alpha 2 M monomers at molar ratios of proteinase to alpha 2M monomers as low as 0.3:1 leads to extensive reassociation and is accompanied by complete bait-region and thiolester bond cleavage. During the reaction of alpha 2M monomers with proteinases, the proteinase binds to the reassociating alpha 2M subunits but is not inhibited. Of significance, all the bound proteinase was covalently linked to the reassociated alpha 2M species. Treatment of alpha 2M monomers with methylamine results in thiolester bond cleavage but minimal reassociation. Treatment of alpha 2M monomers with methylamine followed by proteinase results in complete bait-region cleavage and is accompanied by marked reassociation of alpha 2M monomers to higher molecular weight species. However, no proteinase is associated with these higher molecular weight forms. We infer that bait-region cleavage is more important than thiolester bond cleavage in driving alpha 2M monomers to reassociate. Despite many similarities between alpha 1I3 and alpha 2M monomers, significant differences must exist with respect to proteinase orientation within the inhibitor to account for the failure of alpha 2M monomers to protect large molecular weight substrates from proteolysis by bound proteinase, in contrast to the naturally occurring monomeric homologue rat alpha 1 I3.  相似文献   

12.
The reactions of cis- and trans-dichlorodiammineplatinum(II) (cis- and trans-DDP) with albumin and two plasma proteinase inhibitors were compared. Reaction with alpha 2-macroglobulin (alpha 2M) resulted in subunit crosslinking and loss of proteinase binding activity. The reaction also modified a receptor recognition site present on each alpha 2M subunit. While more trans-DDP was incorporated into alpha 2M than cis-DDP, cis-DDP was more effective at blocking receptor recognition, alpha 1-proteinase inhibitor was also inactivated by reaction with either cis- or trans-DDP. These reactions resulted in binding of platinum to methionine-358 at the reactive center of this inhibitor. Trans-DDP, however, was less selective and also bound to the single cysteine residue (Cys-232) of alpha 1PI. Reaction of albumin with cis-DDP resulted in incorporation of about 1 mol platinum per mol protein, and this platinum modified the single cysteine (Cys-34) in the molecule. Albumin incorporated twice as much trans-DDP, but the binding did not involve cysteine-34. In general, reactions of cis-DDP with proteins appear to be more selective than those observed for modification with the trans isomer.  相似文献   

13.
alpha(2)-Macroglobulin (alpha(2)M) is a highly conserved proteinase inhibitor present in human plasma at high concentration (2-4 mg/ml). alpha(2)M exists in two conformations, a native form and an activated, receptor-recognized form. While alpha(2)M binds to numerous cytokines and growth factors, in most cases, the nature of the alpha(2)M interaction with these factors is poorly understood. We examined in detail the interaction between alpha(2)M and vascular endothelial growth factor (VEGF) and found a novel and unexpected mechanism of interaction as demonstrated by the following observations: 1) the binding of VEGF to alpha(2)M occurs at a site distinct from the recently characterized growth factor binding site; 2) VEGF binds different forms of alpha(2)M with distinct spatial arrangement, namely to the interior of methylamine or ammonia-treated alpha(2)M and to the exterior of native and proteinase-converted alpha(2)M; and 3) VEGF (molecular mass approximately 40 kDa) can access the interior of receptor-recognized alpha(2)M in the absence of a proteinase trapped within the molecule. VEGF bound to receptor-recognized forms of alpha(2)M is internalized and degraded by macrophages via the alpha(2)M receptor, the low density lipoprotein receptor-related protein. Oxidation of both native and receptor-recognized alpha(2)M results in significant inhibition of VEGF binding. We also examined the biological significance of this interaction by studying the effect of alpha(2)M on VEGF-induced cell proliferation and VEGF-induced up-regulation of intracellular Ca(2+) levels. We demonstrate that under physiological conditions, alpha(2)M does not impact the ability of VEGF to induce cell proliferation or up-regulate Ca(2+).  相似文献   

14.
Human alpha 2-macroglobulin (alpha 2M) is a unique 720-kDa proteinase inhibitor with a broad specificity. Unlike most other proteinase inhibitors, it does not inhibit proteolytic activity by blocking the active site of the proteinase. During complex formation with a proteinase, alpha 2M entraps the proteinase molecule in a reaction that involves large conformational changes in alpha 2M. We describe the molecular cloning of alpha 2M cDNA from the human hepatoblastoma cell line HepG2. The cDNA was subcloned under control of the adenovirus major late promoter in a mammalian expression vector and introduced into the baby hamster kidney (BHK) cell line. Transformed clones were isolated and tested for production of human alpha 2M with a specific enzyme-linked immunosorbent assay. Human recombinant alpha 2M (r alpha 2M), secreted and purified from isolated transfected BHK cell lines, was structurally and functionally compared to alpha 2M purified from human serum. The results show that r alpha 2M was secreted from the BHK cells as an active proteinase-binding tetramer with functional thiol esters. Cleavage reactions of r alpha 2M with methylamine and trypsin showed that the recombinant product, which was correctly processed at the N-terminus, exhibited molecular characteristics similar to those of the human serum derived reference. Moreover, r alpha 2M-trypsin complex bound to purified human placental alpha 2M receptor with an affinity indistinguishable from that of a complex formed from serum-derived alpha 2M and trypsin.  相似文献   

15.
alpha 2-Macroglobulin, one of the major plasma proteinase inhibitors with Mr = 720,000, is known to inhibit proteinases of all four classes through the "trap mechanism" (Barrett, A. J., and Starkey, P. M. (1973) Biochem. J. 133, 709-724), but the proteinase binding site of alpha 2-macroglobulin has not been identified precisely. We localized bound proteinase molecules on the electron microscopic images of alpha 2-macroglobulin, using anti-proteinase IgG. Serratial Mr = 56,000 proteinase produced by Serratia marcescens was chosen as the antigenic probe in this study because its affinity to specific antibodies was retained in its bound state to alpha 2-macroglobulin. Dimers of alpha 2-macroglobulin/Mr = 56,000 proteinase complexes cross-linked with anti-Mr = 56,000 proteinase IgG were prepared and subjected to electron microscopic observations. The electron microscopic image of alpha 2-macroglobulin complexed with Mr = 56,000 proteinase had four straight arms with an overall shape looking like the character "H." From the way anti-Mr = 56,000 proteinase IgG linked two alpha 2-macroglobulins, it was concluded that the proteinase existed in the midregion of one of the arms. This result helps us to form a more concrete view of the trap mechanism in that one of the arms of alpha 2-macroglobulin wraps the trapped proteinase and holds it isolated from high molecular weight substrates in the surrounding medium.  相似文献   

16.
Limited proteolysis of human alpha 2-macroglobulin (alpha 2M) by a novel bacterial proteinase resulted in the isolation of a soluble 20-kDa domain. The isolated fragment contained the receptor recognition site, expressed on alpha 2M complexes, as it competed effectively with alpha 2M-trypsin for binding to the receptor on skin fibroblasts. The fragment also reacted with two monoclonal antibodies which define epitopes that are part of the receptor recognition site. Characterization of the 20-kDa domain showed it to contain an intact disulfide bridge, while its susceptibility to N-glycanase and reaction with concanavalin A indicated the presence of N-linked carbohydrate. The NH2-terminal sequence (Glu-Glu-Phe-Pro-Phe-Ala-Leu-Gly-Val-Glu-Thr-Leu-Pro-Glu-Thr-Cys-Asp-Glu -Pro) proved this fragment to constitute the COOH terminus of human alpha 2M. Proteolysis occurred at Lys1313-Glu which together with the observation that tosyllysine chloromethyl ketone was an effective inhibitor of the bacterial proteinase, would indicate the latter to hydrolyze preferentially peptide bonds carboxyl-terminal to lysine residues.  相似文献   

17.
P A Roche  M D Moncino  S V Pizzo 《Biochemistry》1989,28(19):7629-7636
Treatment of the human plasma proteinase inhibitor alpha 2-macroglobulin (alpha 2M) with proteinase results in conformational changes in the inhibitor and subsequent activation and cleavage of the internal thiolester bonds of alpha 2M. Previous studies from this laboratory have shown that cross-linking the alpha 2M subunits with cis-dichlorodiammineplatinum(II) (cis-DDP) prevents the proteinase-induced conformational changes which lead to the activation and cleavage of the internal thiolester bonds of alpha 2M. In addition, cis-DDP treatment prevents the proteinase- or CH3NH2-induced conformational changes in alpha 2M which lead to a "slow" to "fast" change in nondenaturing polyacrylamide gel electrophoresis. In this paper, we demonstrate that treatment of alpha 2M with dithiobis(succinimidyl propionate) (DSP) also results in cross-linking of the subunits of alpha 2M with concomitant loss of proteinase inhibitory activity. Although proteinase is not inhibited by DSP-treated alpha 2M, bait region specific proteolysis of the alpha 2M subunits still occurs. Unlike cis-DDP-treated alpha 2M, however, incubation of DSP-treated alpha 2M with proteinase does not prevent the bait region cleavage dependent conformational changes which lead to activation and cleavage of the internal thiolester bonds in alpha 2M. On the other hand, cross-linking of alpha 2M with DSP does prevent the conformational changes which trigger receptor recognition site exposure following cleavage of the alpha 2M thiolester bonds by CH3NH2. These conformational changes, however, occur following incubation of the CH3NH2-treated protein with proteinase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Three-dimensional electron microscopy reconstructions of the human alpha(2)-macroglobulin (alpha(2)M) dimer and chymotrypsin-transformed alpha(2)M reveal the structural arrangement of the two dimers that comprise native and proteinase-transformed molecules. They consist of two side-by-side extended strands that have a clockwise and counterclockwise twist about their major axes in the native and transformed structures, respectively. This and other studies show that there are major contacts between the two strands at both ends of the molecule that evidently sequester the receptor binding domains. Upon proteinase cleavage of the bait domains and subsequent thiol ester cleavages, which occur near the central region of the molecule, the two strands separate by 40 A at both ends of the structure to expose the receptor binding domains and form the arm-like extensions of the transformed alpha(2)M. During the transformation of the structure, the strands untwist to expose the alpha(2)M central cavity to the proteinase. This extraordinary change in the architecture of alpha(2)M functions to completely engulf two molecules of chymotrypsin within its central cavity and to irreversibly encapsulate them.  相似文献   

19.
The active site titration for various proteinases relies on the development of optimal enzyme titrants for each proteinase, but these titrants are only available for a limited number of proteinases. We have described a new active site titration method applicable to various kinds of endoproteinases using small quantities of the enzymes. This method was carried out by using alpha 2-macroglobulin (alpha 2M) as a titrant and a high-performance liquid chromatography (HPLC) system. When the proteinase solution was treated with alpha 2M, the active proteinase was trapped by alpha 2M. In this reaction alpha 2M does not usually complex with inactive proteinase. After the reaction of proteinase with an excess of alpha 2M, the reaction mixture is applied to an HPLC gel column to separate the uncomplexed enzyme from the one complexed with alpha 2M. The active proteinase is complexed and eluted with alpha 2M, but the inactive proteinase is eluted at the original elution volume. The same amount of the enzyme was also applied to the column. From the decrease of the peak height at the elution position of the uncomplexed proteinase, we can estimate the ratio between enzymatically active proteinases and total proteinases. To test the usefulness of this method, we applied this method to chymotrypsin and trypsin whose activities were predetermined by conventional active site titration, and there was good agreement between both results. With this new method, we can estimate a proteinase activity with as little as 200 ng of the enzyme, a very small amount compared with those required in conventional methods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Zinc binding to human alpha 2-macroglobulin was studied to assess its involvement in the structure and function alpha 2-macroglobulin. Equilibrium dialysis experiments indicated multiple classes of zinc-binding sites, the one of highest affinity having a site number of 20 and a Kd value of 8 X 10(-7) M. Native alpha 2-macroglobulin and alpha 2-macroglobulin-trypsin complexes bound comparable amount of zinc. The proteinase inhibitory activity of alpha 2-macroglobulin was not affected by zinc binding at physiological concentrations nor by the removal of zinc by EDTA. Above 25 microM zinc, alpha 2-macroglobulin activity decreased, although binding of [125I]trypsin was not affected. When nondenaturing gel electrophoresis was performed, the preparation of alpha 2-macroglobulin migrated as half-molecules at increasing zinc concentration. Experiments with other divalent cations correlated decreases in alpha 2-macroglobulin activity with apparent dissociation of the alpha 2-macroglobulin tetramer in the presence of copper and mercury, but not barium, cadmium or nickel. While zinc binding to alpha 2-macroglobulin does not function in proteinase inhibition, it might be involved in zinc transport in vivo. At nonphysiological concentrations, zinc and other divalent cations are useful as probes of protein quaternary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号