首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Calmodulin (Cam), the heat-stable, ubiquitous, Ca2+-dependent regulator protein, has been purified to apparent homogeneity from germinating radish seeds (Raphanus sativus). The characteristics of radish Cam-molecular weight, absorption spectrum, Ca2+-dependent activation of brain phosphodiesterase (PDE)-are very similar to those described for Cam from other plant materials. Radish Cam, like other plant Cam, shows some differences to Cam of calf brain. The total amount of Cam in radish embryos at 24 h of germination is ca. 37 μg g−1 fresh weight. Approximately 95% of the total amount of Cam is present in the soluble fraction (supernatant at 100,000 g). The level in the embryo axis strongly increases in the first 24 h of germination (+540%); this increase is strongly reduced when the germination is inhibited by abscisic acid (ABA). In the presence of Ca2+, no ‘free’ Cam (i.e. not bound to other structures) is present in the soluble fraction, suggesting that, during early germination, Cam level is a limiting factor for the activities of Ca2+ -Cam-dependent systems. These studies suggest that Cam plays an important role in the early phases of seed germination. An inhibitor of the Ca2+-Cam-dependent phosphodiesterase is present in the soluble fraction from radish embryos; this substance decreases during germination. A possible role of this inhibitor during the early germination phases is hypothesized.  相似文献   

2.
Incubation of radish (Raphanus sativus L.) seeds in the presence of 1 or Smol m?3 Ca-EGTA, which increased Ca2+ activity in the incubation medium (c. 0.24 or 0.37 mol m?3 at 24 h with respect to c. 0.13 mol m?3 in the control), did not affect germination, the restoration of K+ net influx, the increase in DNA and RNA levels or protein synthesis. Incubation in 1 mol m?3 Na-EGTA, which reduced Ca2+ activity in the incubation medium (20 mmol m?3 at 24 h), decreased the total Ca2+ level in embryo axes (-21%), but only slightly inhibited the increase in fresh weight without affecting the restoration of K+ net influx, the increase in DNA and RNA levels or protein synthesis. In the presence of 5 mol m?3 Na-EGTA (Ca2+ activity in the incubation medium was 0.6 mmol m?3), the decrease in the total Ca2+ level was greater (c. -27%) and the increases in fresh weight, DNA and RNA were inhibited by about 50, 39 and 40%, respectively. These results indicate that increased Ca2+ availability does not affect germination and suggest that the effect of Na-EGTA, at least up to 5 mol m?3, is a result of an induction of Ca2+ deficiency. The amount and specific activity of calmodulin (CaM) present in the soluble fraction (100 000g) of radish embryo axes greatly increased during the first 24 h of incubation (c. 5-fold and 7-fold, respectively). This increase was very similar in the Ca-EGTA-treated seeds but was inhibited (c. -38%) by 1 mol m?3 Na-EGTA, even if the increases in DNA and RNA levels and protein synthesis were not significantly reduced. The lower amount of CaM after 24 h of incubation in 1 mol m?3 Na-EGTA (c. -30%) was due to a reduction in the fraction of CaM bound to a proteinaceous CaM inhibitor present in radish seeds [M. Cocucci & N. Negrini (1988) Plant Physiology 88, 910–914] and not involved in the metabolic reactivation of the seed. These results suggest that the level of CaM is controlled by Ca2+ availability and that the CaM inhibitor has a role in controlling the amount of Ca-CaM available for the Ca-CaM-dependent enzymes.  相似文献   

3.
The toxicity of Cd2+in vivo during the early phases of radish (Raphanus sativus L.) seed germination and the in vitro Cd2+ effect on radish calmodulin (CaM) were studied. Cd2+ was taken up in the embryo axes of radish seeds; the increase in fresh weight of embryo axes after 24 h of incubation was inhibited significantly in the presence of 10 mmol m?3 Cd2+ in the external medium, when the Cd2+ content in the embryo axes was c. 1.1 μmol g?1 FW. The reabsorption of K+, which characterizes germination, was inhibited by Cd2+, suggesting that Cd2+ affected metabolic reactivation. The slight effect of Cd2+ on the transmembrane electric potential of the cortical cells of the embryo axes excluded a generalized toxicity of Cd2+ at the plasma membrane level. After 24 h of incubation, Cd2+ induced no increase in total acid-soluble thiols and Cd2+-binding peptides able to reduce Cd2+ toxicity. Ca2+ added to the incubation medium partially reversed the Cd2+-induced inhibition of the increase in fresh weight of embryo axes and concomitantly reduced Cd2+ uptake. Equilibrium dialysis experiments indicated that Cd2+ bound to CaM and competed with Ca2+ in this binding. Cd2+ inhibited the activation of Ca2+-CaM-dependent calf-brain phosphodiesterase, inhibiting the Ca2+-CaM active complex. Cd2+ reduced the binding of CaM to the Ca2+-CaM binding enzymes present in the soluble fraction of the embryo axes of radish seeds. The possibility that Cd2+ toxicity in radish seed germination is mediated by the action of Cd2+ on Ca2+-CaM is discussed in relation to the in vivo and in vitro effects of Cd2+.  相似文献   

4.
The effect of calmodulin on the activity of the plasma membrane Ca-ATPase was investigated on plasma membranes purified from radish (Raphanus sativus L.) seedlings. Calmodulin stimulated the hydrolytic activity and the transport activity of the plasma membrane Ca-ATPase to comparable extents in a manner dependent on the free Ca2+ concentration. Stimulation was marked at low, nonsaturating Ca2+ concentrations and decreased increasing Ca2+, so that the effect of calmodulin resulted in an increase of the apparent affinity of the enzyme for free Ca2+. The pattern of calmodulin stimulation of the plasma membrane Ca-ATPase activity was substantially the same at pH 6.9 and 7.5, in the presence of ATP or ITP, and when calmodulin from radish seeds was used rather than that from bovine brain. At pH 6.9 in the presence of 5 micromolar free Ca2+, stimulation of the plasma membrane Ca-ATPase was saturated by 30 to 50 micrograms per milliliter bovine brain calmodulin. The calmodulin antagonist calmidazolium inhibited both basal and calmodulin-stimulated plasma membrane Ca-ATPase activity to comparable extents.  相似文献   

5.
In recalcitrant seeds of horse chestnut (Aesculus hippocastanum L.) maintaining a high water content during winter, dormancy is determined by the presence and influence of the seed coat, while the axial organs of the embryos excised from these seeds are not dormant. Such axial organs were capable for active water uptake and rapid fresh weight increase, so that their fresh weights exceeded those in intact seeds at the time of radicle protrusion. Fructose plays an essential role in the water uptake as a major osmotically active compound. ABA interferes with the water uptake by the axial organs and thus delays the commencement of their growth. The manifestation of seed response to ABA during the entire dormancy period indicates the presence of active ABA receptors and the pathways of its signal transduction. The content of endogenous ABA in the embryo axes doubled in the middle of dormancy period, which coincided with a partial suppression of water uptake by the axes. During seed dormancy release and imbibition before radicle protrusion, the level of endogenous ABA in axes declined gradually. Application of exogenous ABA can imitate dormancy by limiting water absorption by axial organs. Fusicoccin A (FC A) treatment neutralized completely this ABA effect. Endogenous FC-like ligands were detected in the seed axial organs during dormancy release and germination. Apparently, endogenous FC stimulates water uptake via the activation of plasmalemmal H+-ATPase, acidification of cell walls, their loosening, and turgor pressure reduction. FC can evidently counteract the ABA-induced suppression of water uptake by controlling the activity of H+-ATPase. It is likely that, in dormant intact recalcitrant seeds, axial organs, maintaining a high water content, are competent to elevate their water content and to start their preparation for germination under the influence of FC when coat-imposed dormancy becomes weaker.  相似文献   

6.
Ca2+ is believed to be a critical second messenger in ABA signal transduction. Ca2+-dependent protein kinases (CDPKs) are the best characterized Ca2+ sensors in plants. Recently, we identified an Arabidopsis CDPK member CPK12 as a negative regulator of ABA signaling in seed germination and post-germination growth, which reveals that different members of the CDPK family may constitute a regulation loop by functioning positively and negatively in ABA signal transduction. We observed that both RNA interference and overexpression of CPK12 gene resulted in ABA-hypersensitive phenotypes in seed germination and post-germination growth, suggesting a high complexity of the CPK12-mediated ABA signaling pathway. CPK12 stimulates a negative ABA-signaling regulator (ABI2) and phosphorylates two positive ABA-signaling regulators (ABF1 and ABF4), which may partly explain the ABA hypersensitivity induced by both downregulation and upregulation of CPK12 expression. Our data indicate that CPK12 appears to function as a balancer in ABA signal transduction in Arabidopsis.  相似文献   

7.
Calmodulin   总被引:2,自引:0,他引:2  
Summary Ca2+ as an important cellular regulator has long been recognized. Calmodulin is unique among several proteins considered to be Ca2+ receptors in its ubiquitous distribution in eukaryotic cells and in its multiple effects through interaction with different enzymes and proteins. Apparently, calmodulin is the major Ca2+ receptor in most of these cells and most of metabolic active Ca2+ exists as a Ca2+-calmodulin complex.The importance of calmodulin as a Ca2+ mediator is also indicated by its role as the Ca2+-sensor in the regulation of Ca2+ pump which effectively maintains a low steady level of intracellular free Ca2+. The participation of calmodulin in the regulation of intracellular Ca2+ level suggests the desire for the cell to maintain adequate steady levels of metabolic active Ca2+. A low calmodulin concentration may in effect slow down the Ca2+ pump allowing a higher concentration of intracellular free Ca2+, but may also require higher Ca2+ threshold for Cat+ effects. A prominent difference in calmodulin contents of different eukaryotic cells has been noted and this difference may reflect the difference in the extents and the types of Ca2+-mediated reactions that operate in the cells. It is also possible that calmodulin concentration may fluctuate in response to different metabolic conditions. The evident for such possibility has been provided by the observations that cAMP-dependent protein kinase and ATP together with cAMP or neurotransmitters that stimulate cAMP synthesis cause the release of calmodulin from synaptic membranes (139, 140). However, the cytosolic calmodulin increased as the result of its release from the membranes is unlikely to be sufficient for eliciting calmodulin-mediated Ca2+ effects without a concomitant significant increase of intracellular Ca2+. The calmodulin release, in effect, may decrease the Ca2+ threshold of these effects.The manifestation of calmodulin-mediated Ca2+ effects in a particular type of cells appears determined mainly by the calmodulin-regulated enzymes existing in the cells. Within the same cells, however, the particular species of Ca2+-calmodulin complex serving as the active calmodulin, the affinity of the enzyme for the active calmodulin and the localization of the enzyme in the cells may determine the circumstance under which particular reactions are expressed.During the past years, substantial progress has been made in understanding calmodulin in terms of primary structure and molecular properties and in discovering many Ca2+-dependent, calmodulin-regulated enzymes and cellular activities. Our understanding of calmodulin and its relation to the wide range of Ca2+-dependent enzymes and activities has provided a framework for comprehending Ca2+ functions in the cells at the molecular level. Further works, however, are required to unravel fully the detailed mechanisms and properties that govern the calmodulin-enzyme interactions and to narrow further the gaps between Ca2+-elicited cellular expressions and the molecular events that lead to such expressions.  相似文献   

8.
The first tuber mustard calmodulin-like (CML) gene BjAAR1 (Brassica juncea var. tumida Tsen et Lee Abiotic stress and Abscisic acid (ABA) Responsive gene 1) was cloned and characterized. The protein encoded by BjAAR1 contains four predicted Ca2+ binding sites (EF-hand motif) and its recombinant protein can bind Ca2+ in vitro. qRT-PCR showed that the expression level of BjAAR1 was rather high in non-swollen stem of tuber mustard and largely reduced in swollen stem. Expression of BjAAR1 enhanced ABA- and stress-induced gene expression in Arabidopsis (Arabidopsis thaliana). Transgenic plants also exhibited hypersensitivity to NaCl, mannitol, and ABA during the seed germination and post-germination stages. ABA biosynthesis inhibitor, norflurazon (NF), rescued hypersensitivity phenotype of transgenic plants to NaCl and mannitol, indicating that BjAAR1 functions in multiple abiotic stresses response through ABA-dependent process.  相似文献   

9.
Abstract: The features of Ca2+ fluxes, the importance of the Ca2+ pump‐mediated H+/Ca2+ exchanges at plasmalemma level, and the possible involvement of Ca2+‐ATPase activity in ABA‐induced changes of H+ fluxes were studied in Egeria densa leaves. The results presented show that, while in basal conditions no net Ca2+ flux was evident, a conspicuous Ca2+ influx (about 1.1 ìmol g?1 FW h?1) occurred. The concomitant efflux of Ca2+ was markedly reduced by treatment with 5 íM eosin Y (EY), a specific inhibitor of the Ca2+‐ATPase, that completely blocked the transport of Ca2+ after the first 20 ‐ 30 min. The decrease in Ca2+ efflux induced by EY was associated with a significant increase in net H+ extrusion (?ÄH+) and a small but significant cytoplasmic alkalinization. The shift of external [Ca2+] from 0.3 to 0.2 mM (reducing Ca2+ uptake by about 30 %) and the hindrance of Ca2+ influx by La3+ were accompanied by progressively higher ?ÄH+ increases, in agreement with a gradual decrease in the activity of a mechanism counteracting the Ca2+ influx by an nH+/Ca2+ exchange. The ABA‐induced decreases in ?ÄH+ and pHcyt were accompanied by a significant increase in Ca2+ efflux, all these effects being almost completely suppressed by EY, in line with the view that the ABA effects on H+ fluxes are due to activation of the plasmalemma Ca2+‐ATPase. These results substantially stress the high sensitivity and efficacy of the plasmalemma Ca2+ pump in removing from the cytoplasm the Ca2+ taken up, and the importance of the contribution of Ca2+ pump‐mediated H+/Ca2+ fluxes in bringing about global changes of H+ fluxes at plasmalemma level.  相似文献   

10.
以拟南芥野生型和类受体蛋白激酶基因CRK45的T-DNA插入突变体crk45为材料,采用差异基因表达筛选技术检测ABA处理后野生型和crk45中基因表达的差异。结果显示:(1)crk45突变体中有1个基因的表达比野生型高约4倍。(2)NCBI数据库检索表明,该基因编码的蛋白具有EF手型结构,蛋白序列全长为130个氨基酸,是典型的Ca2+结合蛋白,故命名为CRK45抑制的钙离子结合蛋白(CICBP)。(3)Northern blotting分析结果显示,ABA处理后crk45突变体中CICBP的表达明显升高,证明CICBP基因的确受ABA诱导,且其表达受CRK45的抑制。(4)外源75mmol/L的Ca2+处理后,crk45突变体的萌发率(30.8%)显著高于野生型(17.16%),说明在Ca2+介导下CRK45的功能是抑制种子萌发。(5)qRT-PCR检测显示,野生型中CRK45的表达受Ca2+诱导明显升高,而crk45突变体中的表达一直保持很低,说明crk45突变体是一个基因敲除突变体;Ca2+处理后crk45突变体中CICBP基因表达上调,而野生型中CICBP的表达反而降低,说明Ca2+处理下CRK45抑制CICBP基因的表达。研究表明,ABA或Ca2+处理后,CRK45通过负调控CICBP基因的表达,从而抑制拟南芥种子萌发。  相似文献   

11.
Calmodulin and the regulation of smooth muscle contraction   总被引:8,自引:0,他引:8  
Calmodulin, the ubiquitous and multifunctional Ca2+-binding protein, mediates many of the regulatory effects of Ca2+, including the contractile state of smooth muscle. The principal function of calmodulin in smooth muscle is to activate crossbridge cycling and the development of force in response to a [Ca2+]i transientvia the activation of myosin light-chain kinase and phosphorylation of myosin. A distinct calmodulin-dependent kinase, Ca2+/calmodulin-dependent protein kinase II, has been implicated in modulation of smooth-muscle contraction. This kinase phosphorylates myosin light-chain kinase, resulting in an increase in the calmodulin concentration required for half-maximal activation of myosin light-chain kinase, and may account for desensitization of the contractile response to Ca2+. In addition, the thin filament-associated proteins, caldesmon and calponin, which inhibit the actin-activated MgATPase activity of smooth-muscle myosin (the cross-bridge cycling rate), appear to be regulated by calmodulin, either by the direct binding of Ca2+/calmodulin or indirectly by phosphorylation catalysed by Ca2+/calmodulin-dependent protein kinase II. Another level at which calmodulin can regulate smooth-muscle contraction involves proteins which control the movement of Ca2+ across the sarcolemmal and sarcoplasmic reticulum membranes and which are regulated by Ca2+/calmodulin, e.g. the sarcolemmal Ca2+ pump and the ryanodine receptor/Ca2+ release channel, and other proteins which indirectly regulate [Ca2+]i via cyclic nucleotide synthesis and breakdown, e.g. NO synthase and cyclic nucleotide phosphodiesterase. The interplay of such regulatory mechanisms provides the flexibility and adaptability required for the normal functioning of smooth-muscle tissues.  相似文献   

12.
Recent investigations have shown that abscisic acid (ABA) dependsupon the availability of Ca2+ for its action in certain systems.In order to check whether ABA requires Ca2+ to inhibit seedgermination, the effects of ABA, CaCl2, EGTA (a Ca2+ chelator)and lanthanum chloride and nifedipine (Ca2+ channel blockers),individually and in combination, on seed germination of Brassicajuncea L. cv. RLM-198 were studied. ABA inhibited germinationin a concentration dependent manner. ABA-induced inhibitionwas abolished with the lapse of time after application. Calciumneither affected germination nor altered the ABA-induced inhibition.EGTA. La3+ and nifedipine suppressed seed germination when testedindividually and further elevated the ABA effect, in a synergisticway, when applied simultaneously. They also prevented the time-dependentreduction in ABA-induced inhibition. The findings indicate thatCa2+ is not essential for ABA to cause germination inhibition. EGTA, Ca2+ channel blockers, abscisic acid, seed germination, Brassica juncea  相似文献   

13.
The role of 1-aminocyclopropane-1-carboxylic acid (ACC) in pollen germination was investigated in several plant species. It was found that ACC stimulated in vitro pollen germination in all five species of plants tested. EGTA and phenothiazine inhibited the increase in the germination rate induced by ACC. Free Ca2+ levels in the cytosol ([Ca2+]cyt) in ungerminated and germinated pollen were 136 and 287 nm, respectively. Adding 0.25 mm ACC to the germination medium increased the [Ca2+]cyt in germinated pollen up to 450 nm. When pollen was treated with both 0.25 mm ACC and 3.6 μm inositol 1,4,5-trisphosphate, the [Ca2+]cyt increased to 850 nm, and pollen germination was also stimulated. In the presence of Li+, an inhibitor of inositol monophosphatase, the [Ca2+]cyt was reduced to 155 nm, and the ACC-stimulated pollen germination was inhibited. The data provided evidence for the involvement of Ca2+ as a messenger in the stimulative effect of ACC on pollen germination. Received December 1, 1995; accepted February 18, 1998  相似文献   

14.
The changes of cytosolic Ca2+ fluorescence intensity and the activities of calcium channel of primary maize root tip cells induced by PEG6000 or abscisic acid(ABA) were studied by both confocal techniques and the whole-cell patch clamping in this study. The Ca2+ fluorescence intensity increased while treated with PEG or ABA within 10 min, illuminating that Ca2+ participated in the process of ABA signal transduction. For further proving the mechanism and origin of cytosolic Ca2+ increase induced by PEG treatments, N,N,N′,N′-tetraacetic acid (EGTA), Verapamil (VP) and Trifluoperazine (TFP) were added to the PEG solution in the experiments separately. The results showed that Ca2+ fluorescence intensity induced by PEG was suppressed by both EGTA and VP obviously in the root tip cells. The Ca2+ fluorescence intensity of plants changed after the addition of CaM inhibitor TFP while subjected to osmotic stress, which seemed to show that CaM participated in the process of signal transduction of osmotic stress too. The mechanism about it is unknown today. Further, a hyperpolarization-activated calcium permeable channel was recorded in plasma membrane of maize root tip cells. The Ca2+ current (ICa) intensity increased remarkably after PEG treatment, and the open voltage of the calcium conductance increased. Similar changes could be observed after ABA treatment, but the channel opened earlier and the current intensity was stronger than that of PEG treatment. The activation of calcium channel initiated by PEG strongly was inhibited by EGTA, VP or TFP respectively. The results revealed that Ca2+ participated in the signals transduction process of osmotic stress, and the cytosolic free Ca2+ increase by osmotic stress mainly came from the extracellular, and some came from the release of cytoplasmic calcium pool.  相似文献   

15.
Previous results showed that in short-term NaCl-treated beans increased leaf abscisic acid (ABA) concentration was triggered by Na+ but not by Cl-. In this work, the specificity of ABA signaling for Na+ homeostasis was studied by comparing the plant’s responses to solutions that modified accumulation of ABA and/or Na+ uptake and distribution, such as supplemental Ca2+, increased nutrient strength, different isosmotic composition, application of exogenous ABA, fluridone (an ABA inhibitor) and aminooxiacetic acid (AOA, an ethylene inhibitor). After fluridone pretreatment, salt-treated beans had lower Na+ uptake and higher leaf Na+ exclusion capacity than non-pretreated plants. Moreover, Na+ uptake was increased and leaf Na+ exclusion was decreased by AOA and ABA. NaCl and KCl similarly increased leaf ABA and decreased transpiration rates, whereas supplemental Ca2+ and increased strength nutrient solution decreased leaf ABA and leaf Na+. These results show (1) a non-ion-specific increase in ABA that probably signaled the osmotic component of salt, and (2) increased ABA levels that resulted in higher leaf Na+ concentrations due to lower Na+ exclusion or increased root-shoot Na+ translocation.  相似文献   

16.
Cytosolic Ca2+· ([Ca2+]i, and elongation growth were measured in the roots of Arabidopsis thaliana. Exposure of plant tissues to high NaCl and abscisic acid (ABA) concentrations results in a reduction in the rate of growth, but the mechanism by which growth is inhibited is not understood. Both NaCl and ABA treatments are known to influence [Ca2+]i, and in this study we measured the effects of salinity and ABA on [Ca2+]i in cells from the meristematic region of Arabidopsis roots. The Ca2+-sensitive dye Fura-2 and ratiometric techniques were used to measure [Ca2+]i in cells of the root meristem region. Resting [Ca2+]i was found to be between 100 and 200 μmol m?3 in roots of untreated plants. Resting [Ca2+]i changed in response to changes in the [Ca2+] surrounding growing roots. An increase of external [Ca2+] increased [Ca2+]i; conversely, a decrease of external [Ca2+] decreased [Ca2+]i. Exposure of roots to NaCl caused a rapid reduction of [Ca2+]i, a response that was proportional to the external NaCl concentration. Thus, as the NaCl concentration was increased, [Ca2+]i in root meristematic cells decreased. Root elongation was also inhibited in proportion to the external NaCl concentration, with maximal inhibition occurring at 120 mol m?3 NaCl. The [Ca2+]i of root meristem cells also changed in response to ABA, and the magnitude of the effect of ABA was dependent upon ABA concentration. Treatment with 0.2 mmol m?3 ABA caused a momentary increase in [Ca2+]i followed by a decrease after 15 min, but 10 mmol m?3 ABA caused an immediate decline in [Ca2+]i. There was a strong positive correlation between [Ca2+]i and root elongation rates. Experiments with the ABA-deficient Arabidopsis mutant aba-3 indicated that the reduction in [Ca2+]i brought about by NaCl was unlikely to be mediated via changes in endogenous ABA. Experiments with solutes such as sorbitol, KCl and NaNO3 indicated that the effects of NaCl could be mimicked by other solutes and was not specific for NaCl.  相似文献   

17.
Yessotoxin (YTX) is a marine polyether toxin previously described as a phosphodiesterase (PDE) activator in fresh human lymphocytes. This toxin induces a decrease of adenosine 3′,5′‐cyclic monophosphate (cAMP) levels in fresh human lymphocytes in a medium with calcium (Ca2+), whereas the contrary effect has been observed in a Ca2+‐free medium. In the present article, the effect of YTX in K‐562 lymphocytes cell line has been analysed. Surprisingly, results obtained in K‐562 cell line are completely opposite than in fresh human lymphocytes, since in K‐562 cells YTX induces an increase of cAMP levels. YTX cytotoxicity was also studied in both K‐562 cell line and fresh human lymphocytes. Results demonstrate that YTX does not modify fresh human lymphocytes viability, whereas in K‐562 cells, YTX has a highly cytotoxic effect. It has been described in a previous study that YTX induces a small cytosolic Ca2+ increase in fresh human lymphocytes but no effect was observed on Ca2+ pools depletion in these cells. However, our results show that, in K‐562 cells, YTX has no effect on cytosolic Ca2+ levels in a medium with Ca2+ and induces an increase on Ca2+ pools depletion followed by a Ca2+ influx. As far as Ca2+ modulation is concerned these results demonstrate that YTX has a clear opposite effect in tumoural and fresh human lymphocytes. In addition, intracellular Ca2+ reservoirs affected by YTX are different than thapsigargin‐sensible pools. Furthermore, YTX‐dependent Ca2+ pools depletion was abolished by cAMP analogue (dibutyryl cAMP), phosphodiesterase‐4 (PDE4) inhibitor (rolipram), protein kinase A inhibitor (H89) and oxidative phosphorylation uncoupler carbonyl cyanide p‐(trifluoromethoxy) (FCCP) treatments. This evidences the crosstalks between Ca2+, YTX and cAMP pathways. Also, results obtain demonstrate that YTX‐dependent Ca2+ influx was only abolished by FCCP pre‐treatment, which indicates a link between YTX and mitochondria in K‐562 cell line. Cytosolic expression of A‐kinase anchor proteins (AKAPs), the proteins which integrates phosphodiesterases (PDEs) and PKA to the mitochondria, was determined in both cell models. On the one hand, in human fresh lymphocytes, YTX increases AKAP149 cytosolic expression. This fact is accompanied with a decrease in cAMP levels, and therefore PDEs activation, which finally leads to cell survival. On the other hand, in tumoural lymphocytes, YTX has an opposite effect since decreases AKAP149 cytosolic expression and increase cAMP levels which leads to cell death. This is the first time that YTX and mitochondrial AKAPs proteins relationship is characterised. J. Cell. Biochem. 113: 3752–3761, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Effects of exogenous abscisic acid (ABA) and CaCl2 on γ-aminobutyric acid (GABA) accumulation of germinated fava bean under hypoxia-NaCl stress were investigated. Exogenous ABA resulted in the enhancement of glutamate decarboxylase (GAD) and diamine oxidase (DAO) activity as well as GABA content in cotyledon and shoot. CaCl2 increased both enzyme activities in shoot and GABA content in cotyledon and shoot. ABA downregulated GAD expression in cotyledon and radicle, while upregulated that in shoot; it also upregulated DAO expression in each organ. CaCl2 upregulated GAD expression in cotyledon, while downregulated that in radicle. However, it upregulated DAO expression in shoot, downregulated that in radicle. ABA inhibitor fluridon and ethylenediaminetetraacetic acid inhibited GAD and DAO activities significantly so that inhibited GABA accumulation through reducing ABA biosynthesis and chelating Ca2+, respectively. However, they upregulated GAD and DAO expression in varying degrees. These results indicate that ABA and Ca2+ participate in GABA biosynthesis in fava bean during germination under hypoxia-NaCl stress.  相似文献   

19.
Neurogranin (Ng) is a member of the IQ motif class of calmodulin (CaM)-binding proteins, and interactions with CaM are its only known biological function. In this report we demonstrate that the binding affinity of Ng for CaM is weakened by Ca2+ but to a lesser extent (2–3-fold) than that previously suggested from qualitative observations. We also show that Ng induced a >10-fold decrease in the affinity of Ca2+ binding to the C-terminal domain of CaM with an associated increase in the Ca2+ dissociation rate. We also discovered a modest, but potentially important, increase in the cooperativity in Ca2+ binding to the C-lobe of CaM in the presence of Ng, thus sharpening the threshold for the C-domain to become Ca2+-saturated. Domain mapping using synthetic peptides indicated that the IQ motif of Ng is a poor mimetic of the intact protein and that the acidic sequence just N-terminal to the IQ motif plays an important role in reproducing Ng-mediated decreases in the Ca2+ binding affinity of CaM. Using NMR, full-length Ng was shown to make contacts largely with residues in the C-domain of CaM, although contacts were also detected in residues in the N-terminal domain. Together, our results can be consolidated into a model where Ng contacts residues in the N- and C-lobes of both apo- and Ca2+-bound CaM and that although Ca2+ binding weakens Ng interactions with CaM, the most dramatic biochemical effect is the impact of Ng on Ca2+ binding to the C-terminal lobe of CaM.  相似文献   

20.
Methyl jasmonate (MeJA) induces stomatal closure similar to abscisic acid (ABA), and MeJA signaling in guard cells shares some signal components with ABA signaling. As part of this process, MeJA as well as ABA induce the elevation and oscillation of cytosolic free-calcium concentrations ([Ca2+]cyt) in guard cells. While abscisic acid-induced [Ca2+]cyt oscillation has been extensively studied, MeJA-induced [Ca2+]cyt oscillation is less well understood. In this study, we investigated the effects of K252a (a broad-range protein kinase inhibitor) and okadaic acid (OA, a protein phosphatase 1 and 2A inhibitor) on MeJA-induced [Ca2+]cyt oscillation in guard cells of Arabidopsis thaliana ecotype Columbia expressing the Ca2+ reporter yellow cameleon 3.6. The protein kinase inhibitor K252a abolished MeJA-induced stomatal closure and reduced MeJA-elicited [Ca2+]cyt oscillation. The protein phosphatase inhibitor OA, on the other hand, did not inhibit these processes. These results suggest that MeJA signaling involves activation of K252a-sensitive protein kinases upstream of [Ca2+]cyt oscillation but not activation of an OA-sensitive protein phosphatase in guard cells of A. thaliana ecotype Columbia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号