首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to define the role of secretory phospholipase A2 (sPLA2), calcium-independent PLA2, and cytosolic PLA2 (cPLA2) in arachidonic acid (AA) release from fMLP-stimulated human neutrophils. While fMLP induced the release of extracellular sPLA2 activity and AA, 70% of sPLA2 activity remained associated with the cell. Treatment with the cell-impermeable sPLA2 inhibitors DTT or LY311-727, or the anti-sPLA2 Ab 3F10 all inactivated extracellular sPLA2 activity, but had minimal effect on neutrophil AA mass release. In contrast, coincubation of streptolysin-O toxin-permeabilized neutrophils with DTT, LY311-727, or 3F10 all decreased [3H8]AA release from [3H8]AA-labeled, fMLP-stimulated cells. Exposure to fMLP resulted in a decrease in the electrophoretic mobility of cPLA2, a finding consistent with cPLA2 phosphorylation, and stimulated the translocation of cPLA2 from cytosolic to microsomal and nuclear compartments. The role of cPLA2 was further evaluated with the cPLA2 inhibitor methyl arachidonyl fluorophosphonate, which attenuated cPLA2 activity in vitro and decreased fMLP-stimulated AA mass release by intact neutrophils, but had no effect on neutrophil sPLA2 activity. Inhibition of calcium-independent PLA2 with haloenol lactone suicide substrate had no effect on neutrophil cPLA2 activity or AA mass release. These results indicate a role for cPLA2 and an intracellular or cell-associated sPLA2 in the release of AA from fMLP-stimulated human neutrophils.  相似文献   

2.
Neutrophils (PMN) contain two types of phospholipase A2 (PLA2), a 14 kDa ‘secretory’ Type II PLA2 (sPLA2) and an 85 kDa ‘cytosolic’ PLA2 (cPLA2), that differ in a number of key characteristics: (1) cPLA2 prefers arachidonate (AA) as a substrate but hydrolyzes all phospholipids; sPLA2 is not AA specific but prefers ethanolamine containing phosphoacylglycerols. (2) cPLA2 is active at nM calcium (Ca2+) concentrations; sPLA2 requires μM Ca2+ levels. (3) cPLA2 activity is regulated by phosphorylation; sPLA2 lacks phosphorylation sites. (4) cPLA2 is insensitive to reduction; sPLA2 is inactivated by agents that reduce disulfide bonds. We utilized PMN permeabilized with Staphylococcus aureus α-toxin to determine whether one or both forms of PLA2 were activated in porated cells under conditions designed to differentiate between the two enzymes. PMN were labeled with [3H]AA to measure release from phosphatidylcholine and phosphatidylinositol; gas chromatography-mass spectrometry was utilized to determine total AA release (mainly from phosphatidylethanolamine) and to asses oleate and linoleate mass. A combination of 500 nM Ca2+, a guanine nucleotide, and stimulation with n-formyl-met-leu-phe (FMLP) were necessary to induce maximal AA release in permeabilized PMN measured by either method; AA was preferentially released. [3H]AA and AA mass release occurred in parallel over time. A hydrolyzable form of ATP was necessary for maximum AA release and staurosporin inhibited PLA2 activation. Dithiothreitol treatment had little affect on [3H]AA release and metabolism but inhibited AA mass release. Assay of cell supernatants after cofactor addition did not detect sPLA2 activity and the cytosolic buffer utilized did not support activity of recombinant sPLA2. These results strongly suggested that cPLA2 was the enzyme activated in the permeabilized cell model and this is the first report which unambiguously demonstrates AA release in response to activation of a specific type of PLA2 in PMN.  相似文献   

3.
Agents which elevate cellular cAMP are known to inhibit the activation of phospholipase D (PLD) in human neutrophils. The PLD activity of human neutrophils requires protein factors in both membrane and cytosolic fractions. We have studied the regulation of PLD by the catalytic subunit of protein kinase A (cPKA) in a cell-free system. cPKA significantly inhibited GTPgammaS-stimulated PLD activity but had no effect on phorbol ester-activated PLD activity. Pretreatment of plasma membranes with cPKA and ATP inhibited subsequent PLD activation upon reconstitution with untreated cytosol. RhoA, which is known to be a plasma membrane activator of PLD, was dissociated from PKA-treated plasma membrane by addition of cytosol. Plasma membrane-associated RhoA in human neutrophils was phosphorylated by cPKA. The PKA-phosphorylated form of RhoA was more easily extracted from membranes by RhoGDI than the unphosphorylated form. These results suggest that inhibition of neutrophil PLD by PKA may be due to phosphorylation of RhoA on the plasma membrane.  相似文献   

4.
GTP or GTP gamma S alone caused low but significant liberation of arachidonic acid in saponin-permeabilized human platelets but not in intact platelets. GTP or GTP gamma S also enhanced thrombin-induced [3H]arachidonic acid release in permeabilized platelets. Inhibitors of the phospholipase C (neomycin)/diacylglycerol lipase (RHC 80267) pathway for arachidonate liberation did not reduce the [3H]arachidonic acid release. The loss of [3H]arachidonate radioactivity from phosphatidylcholine was almost equivalent to the increase in released [3H]arachidonic acid, suggesting the hydrolysis of phosphatidylcholine by phospholipase A2. The effect of GTP gamma S was greater at lower Ca2+ concentrations. These data indicate that the release of arachidonic acid by phospholipase A2 in saponin-treated platelets may be linked to a GTP-binding protein.  相似文献   

5.
S Umeki 《Life sciences》1990,46(16):1111-1118
Kinetics of activation of the NADPH oxidase in a fully soluble cell-free system from phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system in which Mg2+ and sodium dodecyl sulfate, an anionic detergent required for the activation of NADPH oxidase are contained, cytosol prepared from PMA-stimulated neutrophils failed to activate PMA-stimulated neutrophil oxidase. However, cytosol prepared from resting (control) neutrophils was capable of activating PMA-stimulated neutrophil oxidase in a cell-free system in which its Km for NADPH was almost similar to that of control neutrophil oxidase. Cytosol from PMA-stimulated neutrophils could not activate control neutrophil oxidase, although it did not contain any inhibitors of NADPH oxidase activation. These results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted, and that the affinity for NADPH of PMA-stimulated neutrophil oxidase may be the same as that of control neutrophil oxidase.  相似文献   

6.
The stimuli responsible for eicosanoid secretion of phagocytes in chronic inflammatory disorders like rheumatoid arthritis and chronic inflammatory bowel disease are unknown. Phospholipase A2 (PLA2), found in Russelli vipera snake venom, has been proposed to be more than 100 times more potent on a molar basis than A23187 in releasing leukotriene B4 (LTB4) from porcine neutrophils. Therefore, this enzyme was investigated as a challenger of human neutrophils (PMNs) and compared with immune complexes and A23187. 1-14C-Arachidonic acid (AA) was incorporated into purified human PMNs until steady state conditions were obtained. AA release and metabolism were stimulated with either PLA2 isoenzyme of Russelli vipera, immune complexes, or A23187. The radioactive eicosanoids released were extracted and separated by thin layer chromatography, followed by autoradiography and quantitative laser densitometry. Stimulation with PLA2, immune complexes, or A23187 resulted in LTB4 formation of 0%, 1.8%, and 5.3%, respectively, of total released radioactivity. In conclusion, Russelli vipera PLA2 does not stimulate AA-release and metabolism in human PMNs, and immune complexes are weak as compared to the unphysiologic challenger A23187 in this respect.  相似文献   

7.
When human neutrophils, previously labeled in their phospholipids with [14C]arachidonate, were stimulated with the Ca2+-ionophore, A23187, plus Ca2+ in the presence of [3H]acetate, these cells released [14C]arachidonate from membrane phospholipids, produced 5-hydroxy-6,8,11,14-[14C]eicosatetraenoic acid (5-HETE) and 14C-labeled 5S,12R-dihydroxy-6-cis,8,10-trans, 14-cis-eicosatetraenoic acid ([14C]leukotriene B4), and incorporated [3H]acetate into platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Ionophore A23187-induced formation of these radiolabeled products was greatly augmented by submicromolar concentrations of exogenous 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE), 5-HETE, and leukotriene B4. In the absence of ionophore A23187, these arachidonic acid metabolites were virtually ineffective. Nordihydroguaiaretic acid (NDGA) and several other lipoxygenase/cyclooxygenase inhibitors (butylated hydroxyanisole, 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline and 1-phenyl-2-pyrazolidinone) caused parallel inhibition of [14C]arachidonate release and [3H]PAF formation in a dose-dependent manner. Specific cyclooxygenase inhibitors, such as indomethacin and naproxen, did not inhibit but rather slightly augmented the formation of these products. Furthermore, addition of 5-HPETE, 5-HETE, or leukotriene B4 (but not 8-HETE or 15-HETE) to neutrophils caused substantial relief of NDGA inhibition of [3H]PAF formation and [14C]arachidonate release. As opposed to [3H]acetate incorporation into PAF, [3H]lyso-PAF incorporation into PAF by activated neutrophils was little affected by NDGA. In addition, NDGA had no effect on lyso-PAF:acetyl-CoA acetyltransferase as measured in neutrophil homogenate preparations. It is concluded that in activated human neutrophils 5-lipoxygenase products can modulate PAF formation by enhancing the expression of phospholipase A2.  相似文献   

8.
Lipopolysaccharide (LPS) induces a delayed release (lag phase of 2-4 h) of arachidonic acid (AA) and prostaglandin (PG) D2 in rat liver macrophages. Group IV cytosolic phospholipase A2 (cPLA2) becomes phosphorylated within minutes after the addition of LPS. The phosphorylated form of cPLA2 shows an enhanced in vitro activity. The Ca2+ dependence of cPLA2 activity is not affected by phosphorylation of the enzyme. In addition, LPS induces an enhanced expression of cPLA2 mRNA (after 2-4 h) and an enhanced expression of cPLA2 protein (after 8 h). The cellular cPLA2 activity is enhanced about twofold 24 h after LPS treatment. Liver macrophages constitutively express mRNAs encoding Groups V and IIA secretory PLA2 (sPLA2). LPS has no effect on the levels of Groups V and IIA sPLA2 mRNA expression. Despite mRNA expression, Groups V and IIA sPLA2 protein and sPLA2 activity are not detectable in unstimulated or LPS-stimulated liver macrophages. Collectively, these and earlier [Mediators Inflammation 8 (1999) 295.] results suggest that in liver macrophages the LPS-induced delayed release of AA and prostanoids is mediated by phosphorylation and an enhanced expression of cPLA2, a de novo expression of cyclooxygenase (COX)-2, but not by the actions of Group V or Group IIA sPLA2.  相似文献   

9.
Cytosolic phospholipase A(2) alpha (cPLA(2)alpha) is the only PLA(2) that exhibits specificity for sn-2 arachidonic acid consistent with its primary role in mediating the agonist-induced release of arachidonic acid for eicosanoid production. It is subject to complex mechanisms of regulation that ensure that levels of free arachidonic acid are tightly controlled. The calcium-induced translocation of cPLA(2)alpha from the cytosol to membrane regulates its interaction with phospholipid substrate. cPLA(2)alpha is additionally regulated by phosphorylation on sites in the catalytic domain. Because of its central position as the upstream regulatory enzyme for initiating production of several classes of bioactive lipid mediators (leukotrienes, prostaglandins and platelet-activating factor), it is a potentially important pharmacological target for the control of inflammatory diseases.  相似文献   

10.
We investigated the stimulation of early cellular events resulting from the interaction of the growth factor basic FGF (bFGF) and of the growth inhibitor transforming growth factor beta-type 1 (TGFβ1), with their specific receptors on bovine endothelial cells. At mitogenic concentrations, bFGF stimulated the rapid release of arachidonic acid and its metabolites from (3H)-arachidonic acid labeled cells. When arachidonic acid metabolism was stimulated by addition of the calcium ionophore A23187, the effect of bFGF was amplified. Nordihydroguaïaretic acid, an inhibitor of the lipoxygenase pathway of arachidonic acid metabolism, decreased the mitogenic effect of bFGF, whereas indomethacin, an inhibitor of the cyclooxygenase pathway, was ineffective. These findings suggest that metabolism of arachidonic acid to lipoxygenase products may be necessary for the mitogenic effect of bFGF. Basic FGF did not stimulate the production of inositol phosphates from cells labelled with myo-(2-3H)-inositol nor did it induce calcium mobilization, as measured by fura-2 fluorescence, indicating that bFGF does not activate phosphoinositide specific phospholipase C in endothelial cells, but rather, that bFGF-induced arachidonic acid metabolism is mediated by another phospholipase. TGFβ1, which inhibits basal and bFGF-induced endothelial cell growth, had no effect on arachidonic acid matabolism and inositol phosphate formation and did not prevent bFGF-induced arachidonic acid metabolism. These results suggest that the inhibitory action of TGFβ1 on endothelial cell growth occurs through different mechanisms.  相似文献   

11.
Human blood platelet aggregation and the formation of icosanoids were studied in response to triethyl lead chloride (Et3PbCl). Concentrations higher than 75 microM stimulate platelets to aggregate, whereas low concentrations (less than or equal to 20 microM) caused platelet hypersensitivity to aggregating agents such as collagen or arachidonic acid. Incubation of suspensions of washed platelets with Et3PbCl resulted in a stimulated liberation and subsequent metabolism of arachidonic acid. This response was dependent on the concentration of Et3PbCl and the incubation time. Using low concentrations of Et3PbCl and up to 3 h of incubation, the lipoxygenase product 12-hydroxy-5,8,10,14-icosatetraenoic acid was the major metabolite. Under normal conditions, however, stimulation of platelets with collagen, thrombin, or arachidonic acid leads to higher amounts of the cyclooxygenase products 12-hydroxy-5,8,10-heptadecatrienoic acid and thromboxane B2. The aggregation of human platelets induced by Et3PbCl was inhibited by three different drugs: acetylsalicylic acid, forskolin and quinacrine; but only quinacrine could prevent the liberation of arachidonic acid and the appearance of its metabolites. These specific effects of the inhibitors on Et3PbCl-stimulated platelets as well as the differences in the pattern of arachidonic acid metabolites and phosphatidic acid suggest a direct stimulatory action of Et3PbCl on platelet phospholipase A2.  相似文献   

12.
Subcellular fractionation studies were performed on human neutrophils stimulated with ionomycin (a Ca(2+)-specific ionophore). The results of these studies revealed NADPH-oxidase activity, without any additive, both in the plasma membrane and in the specific granule fractions. After comparing these results with the NADPH oxidase activity induced by the ionophore in intact neutrophils, in differentiated HL-60 cells and in neutrophil cytoplasts, we conclude that ionomycin preferentially activates the NADPH oxidase pool located in the membrane of specific granules. Furthermore, we suggest that incorporation of granule membrane into the plasma membrane makes the associated NADPH oxidase less sensitive to activation induced by a rise in [Ca(2+)]i.  相似文献   

13.
Phagocytosis-induced release of arachidonic acid from human neutrophils   总被引:6,自引:0,他引:6  
The phospholipids of human neutrophils were labeled with [3H] arachidonic acid and [14C] palmitic acid. Phagocytosis of opsonized zymosan resulted in rapid release of free arachidonic acid but not of palmitic acid. Arachidonic acid was not released when the cells were exposed to unopsonized zymosan, zymosan-activated serum, or phorbol myristate acetate. These observations suggest that phagocytosis of opsonized zymosan results in the activation of a phospholipase A2.  相似文献   

14.
Phospholipase A(2) (PLA(2)) enzymes encompass a superfamily of at least 13 extracellular and intracellular esterases that hydrolyze the sn-2 fatty acyl bonds of phospholipids to yield fatty acids and lysophospholipids. The purpose of this study was to characterize which phospholipase paralog regulates NMDA receptor-mediated arachidonic acid (AA) release. Using mixed cortical cell cultures containing both neurons and astrocytes, we found that [(3)H]-AA released into the extracellular medium following NMDA receptor stimulation (100 microM) increased with time and was completely prevented by the addition of the NMDA receptor antagonist MK-801 (10 microM) or by removal of extracellular Ca(2+). Neither diacylglycerol lipase inhibition (RHC-80267; 10 microM) nor selective inhibition of Ca(2+)-independent PLA(2) [bromoenol lactone (BEL); 10 microM] alone had an effect on NMDA receptor-stimulated release of [(3)H]-AA. Release was prevented by methyl arachidonyl fluorophosphonate (MAFP) (5 microM) and AACOCF(3) (1 microM), inhibitors of both cytosolic PLA(2) (cPLA(2)) and Ca(2+)-independent PLA(2) isozymes. This inhibition effectively translated to block of NMDA-induced prostaglandin (PG) production. An inhibitor of p38MAPK, SB 203580 (7.5 microM), also significantly reduced NMDA-induced PG production providing suggestive evidence for the role of cPLA(2)alpha. Its involvement in release was confirmed using cultures derived from mice deficient in cPLA(2)alpha, which failed to produce PGs in response to NMDA receptor stimulation. Interestingly, neither MAFP, AACOCF(3) nor cultures derived from cPLA(2)alpha null mutant animals showed any protection against NMDA-mediated neurotoxicity, indicating that inhibition of this enzyme may not be a viable protective strategy in disorders of the cortex involving over-activation of the NMDA receptor.  相似文献   

15.
The effect of various proteases (kallikrein, plasmin, and trypsin) on sperm phospholipase A2 activity (PA2: EC 3.1.1.4) has been studied. The addition of trypsin to spermatozoa, isolated and washed in the presence of the protease inhibitor benzamidine, increased PA2 activity optimally with trypsin concentrations of 1.0–1.5 units/assay. In kinetic studies, all of the above proteases stimulated the deacylation of phosphatidylcholine (PC); in fresh spermatozoa, trypsin showed a higher activation potential than kallikrein or plasmin. In the presence of benzamidine, the activity remained at basal levels. Endogenous protease activity due to acrosin (control) resulted in an increase in PC deacylation compared to the basal level. The maximum activation time of PA2 activity by proteases was 30 min. Natural protease inhibitors (soybean trypsin inhibitor and aprotinin) kept the PA2 activity at basal levels and a by-product of kallikrein, bradykinin, did not significantly affect the control level. Protein extracts of fresh spermatozoa exhibited the same pattern of PA2 activation upon the addition of proteases, thus indicating that the increase in PA2 activity was not merely due to the release of the enzyme from the acrosome. All of these findings suggest the presence of a precursor form of phospholipase A2 that can be activated by endogenous proteases (acrosin) as well by exogenous proteases present in seminal plasma and in follicular fluid (plasmin, kallikrein). Thus, this interrelationship of proteases and prophospholipase A2 could activate a dormant fusogenic system: the resulting effect would lead to membrane fusion by lysolipids, key components in the acrosome reaction.  相似文献   

16.
Addition of a guanine nucleotide analog, guanosine 5'-O-(thiotriphosphate) (GTP gamma S)(1-100 microM) induced release of [3H]arachidonic acid from [3H]arachidonate-prelabeled rabbit neutrophils permeabilized with saponin. The chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced arachidonate release was enhanced by GTP gamma S, Ca2+, or their combination. Ca2+ alone (up to 100 microM) did not effectively stimulate lipid turnover. However, the combination of fMLP plus GTP gamma S elicited greater than additional effects in the presence of resting level of free Ca2+. The addition of 100 microM of GTP gamma S reduced the Ca2+ requirement for arachidonic acid liberation induced by fMLP. Pretreatment of neutrophils with pertussis toxin resulted in the abolition of arachidonate release and diacylglycerol formation. Neomycin (1 mM) caused no significant reduction of arachidonate release. In contrast, about 40% of GTP gamma S-induced arachidonate release was inhibited by a diacylglycerol lipase inhibitor, RHC 80267 (30 microM). These observations indicate that liberation of arachidonic acid is mediated by phospholipase A2 and also by phospholipase C/diacylglycerol lipase pathways. Fluoride, which bypasses the receptor and directly activates G proteins, induced arachidonic acid release and diacylglycerol formation. The fluoride-induced arachidonate release also appeared to be mediated by these two pathways. The loss of [3H]arachidonate was seen in phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine. These data indicate that a G protein is involved between the binding of fMLP to its receptor and activation of phospholipase A2, and also that the arachidonic acid release is mediated by both phospholipase A2 and phospholipase C/diacylglycerol lipase.  相似文献   

17.
Exposure of PC12 cells to A23187 or thapsigargin caused a concentration-dependent release of arachidonic acid (AA) mediated by cytosolic phospholipase A2 (PLA2). Under the same conditions, however, analysis of nitric oxide (NO) formation revealed that activation of NO synthase (NOS) is best described by a bell-shaped curve. Reduced detection of NO observed at increasing A23187 or thapsigargin concentrations was not due to formation of peroxynitrite or to activation of NO-consuming processes, but rather to AA-dependent inhibition of NOS activity. Furthermore, NO formation observed under optimal conditions for NOS activity was suppressed by AA as well as by the PLA2 activator melittin. Finally, the effects of AA were not the consequence of direct enzyme inhibition, because this lipid messenger failed to inhibit formation of NO by purified neuronal NOS, but were mediated by an AA-dependent signaling and not by downstream products of the cyclooxygenase and lipoxygenase pathways. In conclusion, the present study underscores a novel mechanism whereby endogenous, or exogenous, AA promotes inhibition of NOS activity. Because AA is generated in response to various agonists acting on membrane receptors and extensively released in inflammatory conditions, these findings have important physiopathological implications.  相似文献   

18.
The effects of ethylmercurithiosalicylate (thimerosal) on the transformation of arachidonic acid via the 5-lipoxygenase pathway in human leukocytes stimulated with the Ca-ionophore A23187 were studied. Thimerosal inhibited acyltransferase, 5-lipoxygenase and the omega-oxidation system of LTB4 in a concentration-dependent fashion which was characteristic for the individual metabolites. LTA4 hydrolase activity was not affected. The inhibitory effects of thimerosal occurred instantaneously. The effects of the drug were not influenced by the concentration of the stimulus Ca-ionophore A23187.  相似文献   

19.
Activation of human phospholipase C-eta2 by Gbetagamma   总被引:1,自引:0,他引:1  
Zhou Y  Sondek J  Harden TK 《Biochemistry》2008,47(15):4410-4417
Phospholipase C-eta2 (PLC-eta2) was recently identified as a novel broadly expressed phosphoinositide-hydrolyzing isozyme [Zhou, Y., et al. (2005) Biochem. J. 391, 667-676; Nakahara, M., et al. (2005) J. Biol. Chem. 280, 29128-29134]. In this study, we investigated the direct regulation of PLC-eta2 by Gbetagamma subunits of heterotrimeric G proteins. Coexpression of PLC-eta2 with Gbeta 1gamma 2, as well as with certain other Gbetagamma dimers, in COS-7 cells resulted in increases in inositol phosphate accumulation. Gbeta 1gamma 2-dependent increases in phosphoinositide hydrolysis also were observed with a truncation mutant of PLC-eta2 that lacks the long alternatively spliced carboxy-terminal domain of the isozyme. To begin to define the enzymatic properties of PLC-eta2 and its potential direct activation by Gbetagamma, a construct of PLC-eta2 encompassing the canonical domains conserved in all PLCs (PH domain through C2 domain) was purified to homogeneity after expression from a baculovirus in insect cells. Enzyme activity of purified PLC-eta2 was quantified after reconstitution with PtdIns(4,5)P 2-containing phospholipid vesicles, and values for K m (14.4 microM) and V max [12.6 micromol min (-1) (mg of protein) (-1)] were similar to activities previously observed with purified PLC-beta or PLC-epsilon isozymes. Moreover, purified Gbeta 1gamma 2 stimulated the activity of purified PLC-eta2 in a concentration-dependent manner similar to that observed with purified PLC-beta2. Activation was dependent on the presence of free Gbeta 1gamma 2 since its sequestration in the presence of Galpha i1 or GRK2-ct reversed Gbeta 1gamma 2-promoted activation. The PH domain of PLC-eta2 is not required for Gbeta 1gamma 2-mediated regulation since a purified fragment encompassing the EF-hand through C2 domains but lacking the PH domain nonetheless was activated by Gbeta 1gamma 2. Taken together, these studies illustrate that PLC-eta2 is a direct downstream effector of Gbetagamma and, therefore, of receptor-activated heterotrimeric G proteins.  相似文献   

20.
The profiles of actions of lipoxin A4 (LXA4) and lipoxin B4 (LXB4), two lipoxygenase-derived eicosanoids, were examined with human neutrophils. At nanomolar concentrations, LXA4 and LXB4 each stimulated the release of [1-14C]arachidonic acid from esterified sources in neutrophils. Lipoxin-induced release of [1-14C]arachidonic acid was both dose- and time-dependent and was comparable to that induced by the chemotactic peptide f-met-leu-phe. Time-course studies revealed that lipoxin A4 and lipoxin B4 each induced a biphasic release of [1-14C]arachidonic acid, which was evident within seconds (5-15 sec) in its initial phase and minutes (greater than 30 sec) in the second phase. In contrast, the all-trans isomers of LXA4 and LXB4 did not provoke [1-14C]AA release. Lipoxin-induced release of arachidonic acid was inhibited by prior treatment of the cells with pertussis toxin but not by its beta-oligomers, suggesting the involvement of guaninine nucleotide-binding regulatory proteins in this event. Dual radiolabeling of neutrophil phospholipid classes with [1-14C]arachidonic acid and [3H]palmitic acid showed that phosphatidylcholine was a major source of lipoxin-induced release of [1-14C]arachidonic acid. They also demonstrated that lipoxins rapidly stimulate both formation of phosphatidic acid as well as phospholipid remodeling. Although both LXA4 and LXB4 (10(-8)-10(-6) M) stimulated the release of [1-14C]arachidonic acid, neither compound evoked its oxygenation by either the 5- or 15-lipoxygenase pathways (including the formation of LTB4, 20-COOH-LTB4, 5-HETE, or 15-HETE). LXA4 and LXB4 (10(-7) M) each stimulated the elevation of cytosolic Ca2+ as monitored with Fura 2-loaded cells, albeit to a lesser extent than equimolar concentrations of FMLP. Neither lipoxin altered the binding of [3H]LTB4 to its receptor on neutrophils. In addition, they did not stimulate aggregation or induce adhesion of neutrophils to human endothelial cells. Results indicate that both LXA4 and LXB4 stimulate the rapid remodeling of neutrophil phospholipids to release arachidonic acid without provoking either aggregation or the formation of lipoxygenase-derived products within a similar temporal and dose range. Together they indicate that LXA4 and LXB4 display selective actions with human neutrophils and suggest that these eicosanoids possess unique profiles of action which may regulate neutrophil function during inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号