首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoplasmic calcium increments in the absence of sarco (endo) plasmic reticulum function were measured with a low-affinity fluorophore Indo-1FF in single isolated smooth muscle cells from guinea-pig urinary bladder. To evaluate the Ca(2+)-buffering properties of the myoplasm, Ca2+ influx, measured as time integral of the Ica (integral of Ica), was compared with corresponding free Ca2+ increments (delta [Ca2+]i) in the cytoplasm. The ratio between integral of ICa and delta [Ca2+]i (integral Ica/delta [Ca2+]i), reflecting the Ca2+ buffering properties of the cytosol, was in the range of 4.9-9.3 pC/microM (mean 6.2 +/- 1.2, n = 12). It remained approximately constant (6.4 +/- 1.4 pC/microM, n = 8) during recordings lasting up to 25 min, suggesting that cytoplasmic Ca2+ binding does not change markedly during cell dialysis and that the endogenous Ca2+ buffer is not significantly washed out of the cell through the patch pipette. Wash-in or wash-out of BAPTA, a mobile high-affinity Ca2+ buffer, into or from the cell markedly changed the relationship between Ca2+ influx through Ca2+ channels and delta [Ca2+]i within minutes. Changes in integral of ICa/delta [Ca2+]i during the sequence of depolarizing steps, which increased free [Ca2+]i up to 5 microM, suggested lower limits for the apparent affinity of a rapid Ca2+ buffer (16 microM) and for the total buffer concentration (530 microM). Introduction of 4 mM DPTA (Kd for Ca2+ = 81 microM) into the cell more than doubled the total cytoplasmic Ca2+ buffer capacity. These results suggest that cytoplasmic Ca2+ buffer in smooth muscle cells has a low affinity for free Ca2+. The Ca(2+)-binding ratio of the cytoplasm in most cells was estimated to be between 30 and 40. The Ca(2+)-binding ratio did not differ markedly between cells isolated from neonatal (< or = 5 days) and adult animals.  相似文献   

2.
We have examined intracellular calcium buffer capacity of cytoplasm from the giant axon of the marine invertebrate Myxicola infundibulum by photolytically releasing calcium from ‘caged’ compounds, while monitoring free calcium, [Ca2+], with Ca-sensing electrodes. In cytoplasm containing intact organelles, two features of the [Ca2+] response were seen upon light exposure: an initial spike from basal [Ca2+], followed by a slower phase recovery. Both the amplitude of the spike in [Ca2+] and the recovery were reduced by removal of MgATP. If organelles were removed from the cytoplasm, light exposure caused only a step-like change in [Ca2+] with no recovery.Apparent buffer capacities (Δ bound Ca/Δ free Ca) were unaffected by changing pH from 7.0 to 7.5; however, raising basal free calcium above 3 μM significantly reduced this parameter. The buffer capacity measured after the initial spike varied by as much as an order of magnitude from one giant axon to another but averaged −50 in the absence and 100 in the presence of 1 mM MgATP for [Ca2+] below 3 μM.  相似文献   

3.
We have modeled the time-course of Ca2+ binding to calmodulin, troponin, parvalbumin, and myosin in response to trains of transient increases in the free myoplasmic calcium ion concentration (pCa). A simple mathematical expression was used to describe each pCa transient, the shape and duration of which is qualitatively similar to those thought to occur in vivo. These calculations assumed that all individual metal binding sites are noninteracting and that Ca2+ bind competitively to the Ca2+-Mg2+ sites of troponin, parvalbumin, and myosin. All the on-and-off rate constants for both Ca2+ and Mg2+ were obtained either from the literature or from our own research. The percent saturation of the Ca2+-Mg2+ sites with Ca2+ was found to change very little in response to each pCa transient in the presence of 2.5 X 10(-3)M Mg2+. Our analysis suggests that the Ca2+ content of these sites is a measure of the intensity and frequency of recent muscle activity because large changes in the Ca2+ occupancy of these sites can occur with repeated stimulation. In contrast, large rapid changes in the amount of Ca2+ bound to the Ca2+-specific sites of troponin and calmodulin are induced by each pCa transient. Thus, only sites of the "Ca2+-specific" type can act as rapid Ca2+-regulatory sites in muscle. Fluctuation in the total amount of Ca2+ bound to these sites in response to various types of pCa transients further suggests that in vivo only about one-half to one-third of the total steady-state myofibrillar Ca2+-binding capacity exchanges Ca2+ during any single transient.  相似文献   

4.
The dynamic instability of individual microtubules (Mts) in cytoplasmic extracts or assembled from highly purified sea urchin egg tubulin was examined using video-enhanced, differential-interference contrast (VE-DIC) light microscopy. Extract Mts (endogenous tubulin = 12.1 microM) displayed only plus-ended growth. The elongation velocity was 7.8 microns/min for an average duration of 1.3 min before switching (catastrophe) to rapid shortening, which occurred at 13.0 microns/min for an average duration of 0.5 min before switching (rescue) back to the elongation phase. These parameters are typical of interphase Mt dynamic instability. Surprisingly, Mts assembled from purified urchin egg tubulin in standard buffers were less dynamic that those reported for purified brain tubulin or Mts in the extract. Buffer parameters were changed in an attempt to mimic the extract Mt results. The pH buffer itself, Hepes or Pipes, drastically altered Mt dynamics but could not achieve high elongation velocity with high catastrophe frequencies. Calcium at 1 microM had negligible effects, while increasing pH from 6.9 to 7.2 stimulated elongation velocity. Finally, Mt dynamics of purified egg tubulin (11.9 microM) were assayed in ultrafiltrates (MW cut-off less than 30 kD) of the cytoplasmic extracts. Mts elongated slowly at 1.2 microns/min for 26 min before a catastrophe and rapid shortening at 11.8 microns/min. Rescue was less frequent than unfiltered extracts, minus-ended growth was observed, and self-assembly occurred at slightly higher tubulin concentrations. Therefore, the egg extracts and cytoplasm must contain non-buffer factors which stimulate elongation velocity by 6.5-fold without self-assembly, increase catastrophe frequency by 20-fold, and block minus-ended growth.  相似文献   

5.
Bundles of 10-100 fibers were dissected from the extensor digitorum longus muscle of mouse, mounted in an apparatus for optical recording, and stretched to long sarcomere length (> or = 3.6 microns). One fiber within the bundle was microinjected with furaptra, a fluorescent indicator that responds rapidly to changes in myoplasmic free [Ca2+] (delta [Ca2+]). Twitches and brief tetani were initiated by external stimulation. At myoplasmic furaptra concentrations of approximately 0.1 mM, the indicator's fluorescence signal during fiber activity (delta F/F) was well resolved. delta F/F was converted to delta [Ca2+] under the assumption that furaptra's myoplasmic dissociation constant for Ca2+ is 98 microM at 16 degrees C and 109 microM at 28 degrees C. At 16 degrees C, the peak amplitude of delta [Ca2+] during a twitch was 17.8 +/- 0.4 microM (+/-SEM; n = 8) and the half-width of delta [Ca2+] was 4.6 +/- 0.3 ms. At 28 degrees C, the peak and half-width values were 22.1 +/- 1.8 microM and 2.0 +/- 0.1 ms, respectively (n = 4). During a brief high-frequency tetanus, individual peaks of delta [Ca2+] were also well resolved and reached approximately the same amplitude that resulted from a single shock; the initial decays of delta [Ca2+] from peak slowed substantially during the tetanus. For a single twitch at 16 degrees C, the amplitude of delta [Ca2+] in fast-twitch fibers of mouse is not significantly different from that recently measured in fast- twitch fibers of frog (16.5 +/- 0.9 microM; Zhao, M., S. Hollingworth, and S.M. Baylor. 1996. Biophys. J. 70:896-916); in contrast, the half- width of delta [Ca2+] is surprisingly brief in mouse fibers, only about half that measured in frog (9.6 +/- 0.6 ms). The estimated peak rate at which Ca2+ is released from the sarcoplasmic reticulum in response to an action potential is also similar in mouse and frog, 140-150 microM/ms (16 degrees C).  相似文献   

6.
Determination of ionic calcium in frog skeletal muscle fibers   总被引:3,自引:0,他引:3       下载免费PDF全文
Ionic calcium concentrations were measured in frog skeletal muscle fibers using Ca-selective microelectrodes. In fibers with resting membrane potentials more negative than -85 mV, the mean pCa value was 6.94 (0.12 microM). In fibers depolarized to -73 mV with 10-mM K the mean pCa was 6.43 (0.37 microM). This increase in the intracellular [Ca2+] could be related to the higher oxygen consumption and heat production (Solandt effect) reported to occur under these conditions. Caffeine, 3 mM, also produced an increase in the free ionic calcium to a pCa of 6.52 (0.31 microM) without changes in the membrane potential. Lower caffeine concentrations, 1 and 2 mM, did not change the fiber pCa. Lower Ca concentrations in the external medium effectively reduced the internal ionic calcium to an estimated pCa of 7.43 (0.03 microM).  相似文献   

7.
Unfertilized eggs of the medaka fish (Oryzias latipes) were injected with pH-buffered calcium buffers. Medaka egg activation is accompanied by a transient increase in cytoplasmic free calcium (Gilkey, J. C., L. F. Jaffe, E. B. Ridgway, and G. T. Reynolds, 1978, J. Cell Biol., 76:448-466). The calcium buffer injections demonstrated that (a) the threshold free calcium required to elicit the calcium transient and activate the egg is between 1.7 and 5.1 microM at pH 7.0, well below the 30 microM reached during the transient, and (b) buffers which hold free calcium below threshold prevent activation of the buffered region in subsequently fertilized eggs. Therefore an increase in free calcium is necessary and sufficient to elicit the calcium transient, and the calcium transient is necessary to activate the egg. Further, these results are additional proof that the calcium transient is initiated and propagated through the cytoplasm by a mechanism of calcium- stimulated calcium release. Finally, a normal calcium transient must propagate through the entire cytoplasm to ensure normal development. Unfertilized eggs were injected with pH buffers to produce short-term, localized changes in cytoplasmic pH. The eggs were then fertilized at various times after injection. In other experiments, unfertilized and fertilized eggs were exposed to media containing either NH4Cl or CO2 to produce longer term, global changes in cytoplasmic pH. These treatments neither activated the eggs nor interfered with the normal development of fertilized eggs, suggesting that even if a natural change in cytoplasmic pH is induced by activation, it has no role in medaka egg development. The injected pH buffers altered the rate of propagation of the calcium transient through the cytoplasm, suggesting that the threshold free calcium required to trigger calcium-stimulated calcium release might be pH dependent. The results of injection of pH-buffered calcium buffers support this conjecture: for a tenfold increase in hydrogen ion concentration, free calcium must also be raised tenfold to elicit the calcium transient.  相似文献   

8.
Recent studies indicate that low concentrations of acetaldehyde may function as the primary factor in alcoholic cardiomyopathy by disrupting Ca(2+) handling or disturbing cardiac excitation-contraction coupling. By producing reactive oxygen species, acetaldehyde shifts the intracellular redox potential from a reduced state to an oxidized state. We examined whether the redox state modulates acetaldehyde-induced Ca(2+) handling by measuring Ca(2+) transient using a confocal imaging system and single ryanodine receptor type 2 (RyR2) channel activity using the planar lipid bilayer method. Ca(2+) transient was recorded in isolated rat ventricular myocytes with incorporated fluo 3. Intracellular reduced glutathione level was estimated using the monochlorobimane fluorometric method. Acetaldehyde at 1 and 10 microM increased Ca(2+) transient amplitude and its relative area in intact myocytes, but acetaldehyde at 100 microM decreased Ca(2+) transient area significantly. Acetaldehyde showed a minor effect on Ca(2+) transient in myocytes in which intracellular reduced glutathione content had been decreased against challenge of diethylmaleate to a level comparable to that induced by exposure to approximately 50 microM acetaldehyde. Channel activity of the RyR2 with slightly reduced cytoplasmic redox potential from near resting state (-213 mV) or without redox fixation was augmented by all concentrations of acetaldehyde (1-100 microM) used here. However, acetaldehyde failed to activate the RyR2 channel, when the cytoplasmic redox potential was kept with a reduced (-230 mV) or markedly oxidized (-180 mV) state. This result was similar to effects of acetaldehyde on Ca(2+) transient in diethylmaleate-treated myocytes, probably being in oxidized redox potential. The present results suggest that acetaldehyde acts as an RyR2 activator to disturb cardiac muscle function, and redox potential protects the heart from acetaldehyde-induced alterations in myocytes.  相似文献   

9.
The present study examined the effects of Ca(2+) and strongly bound cross-bridges on tension development induced by changes in the concentration of MgADP. Addition of MgADP to the bath increased isometric tension over a wide range of [Ca(2+)] in skinned fibers from rabbit psoas muscle. Tension-pCa (pCa is -log [Ca(2+)]) relationships and stiffness measurements indicated that MgADP increased mean force per cross-bridge at maximal Ca(2+) and increased recruitment of cross-bridges at submaximal Ca(2+). Photolysis of caged ADP to cause a 0.5 mM MgADP jump initiated an increase in isometric tension under all conditions examined, even at pCa 6.4 where there was no active tension before ADP release. Tension increased monophasically with an observed rate constant, k(ADP), which was similar in rate and Ca(2+) sensitivity to the rate constant of tension re-development, k(tr), measured in the same fibers by a release-re-stretch protocol. The amplitude of the caged ADP tension transient had a bell-shaped dependence on Ca(2+), reaching a maximum at intermediate Ca(2+) (pCa 6). The role of strong binding cross-bridges in the ADP response was tested by treatment of fibers with a strong binding derivative of myosin subfragment 1 (NEM-S1). In the presence of NEM-S1, the rate and amplitude of the caged ADP response were no longer sensitive to variations in the level of activator Ca(2+). The results are consistent with a model in which ADP-bound cross-bridges cooperatively activate the thin filament regulatory system at submaximal Ca(2+). This cooperative interaction influences both the magnitude and kinetics of force generation in skeletal muscle.  相似文献   

10.
Pollen tubes show active cytoplasmic streaming. We isolated organelles from pollen tubes and tested their ability to slide along actin bundles in characean cell models. Here, we show that sliding of organelles was ATP-dependent and that motility was lost after N-ethylmaleimide or heat treatment of organelles. On the other hand, cytoplasmic streaming in pollen tube was inhibited by either N-ethylmaleimide or heat treatment. These results strongly indicate that cytoplasmic streaming in pollen tubes is supported by the "actomyosin"-ATP system. The velocity of organelle movement along characean actin bundles was much higher than that of the native streaming in pollen tubes. We suggested that pollen tube "myosin" has a capacity to move at a velocity of the same order of magnitude as that of characean myosin. Moreover, the motility was high at Ca2+ concentrations lower than 0.18 microM (pCa 6.8) but was inhibited at concentration higher than 4.5 microM (pCa 5.4). In conclusion, cytoplasmic streaming in pollen tubes is suggested to be regulated by Ca2+ through "myosin" inactivation.  相似文献   

11.
Upon fertilization, the concentration of intracellular Ca2+ (Cai) in sea urchin eggs increased up to 3 microM when measured with fura-2, a fluorescent Ca indicator and the increase in Cai traversed from the sperm entry point as a wave over the entire egg at the mean propagation velocities of 5.0 microns/sec in C. japonicus egg and 5.3 microns/sec in H. pulcherrimus egg. However, the velocity was not uniform; i.e., it was rapid in the vicinity of the sperm entry point and the opposite point, but slow in the central region of the egg. Microinjecting a Ca-EGTA buffer and an IP3 solution into the C. japonicus egg induced the transient Cai increase more rapidly than that upon fertilization, due perhaps to the diffusion of the injectates. In order to investigate Ca2+ release during Cai increase upon fertilization, EGTA solutions were microinjected into unfertilized or fertilizing eggs. Microinjecting 100 mM EGTA (final concentration of 1 mM) not only suppressed the transient Cai increase, but also reduced the increased Cai rapidly, and never induced egg activation after insemination, whereas 10 mM EGTA (final concentration of 0.1 mM) did not significantly affect the Cai increase or the activation. Ca2+ released upon fertilization was estimated to be 150-170 microM in the egg cytoplasm from the amount of microinjected EGTA and fura-2. It was concluded that although more than 150 microM of Ca2+ was released intracellularly upon fertilization, Cai increased to only a few microM because most of the released Ca2+ was sequestered by intracellular Ca2+ binding substances.  相似文献   

12.
Fast Ca(2+) release kinetics were measured in cardiac sarcoplasmic reticulum vesicles actively loaded with Ca(2+). Release was induced in solutions containing 1.2 mM free ATP and variable free [Ca(2+)] and [Mg(2+)]. Release rate constants (k) were 10-fold higher at pCa 6 than at pCa 5 whereas Ryanodine binding was highest at pCa < or =5. These results suggest that channels respond differently when exposed to sudden [Ca(2+)] changes than when exposed to Ca(2+) for longer periods. Vesicles with severalfold different luminal calcium contents exhibited double exponential release kinetics at pCa 6, suggesting that channels undergo time-dependent activity changes. Addition of Mg(2+) produced a marked inhibition of release kinetics at pCa 6 (K(0.5) = 63 microM) but not at pCa 5. Coexistence of calcium activation and inhibition sites with equally fast binding kinetics is proposed to explain this behavior. Thimerosal activated release kinetics at pCa 5 at all [Mg(2+)] tested and increased at pCa 6 the K(0.5) for Mg(2+) inhibition, from 63 microM to 136 microM. We discuss the possible relevance of these results, which suggest release through RyR2 channels is subject to fast regulation by Ca(2+) and Mg(2+) followed by time-dependent regulation, to the physiological mechanisms of cardiac channel opening and closing.  相似文献   

13.
Intact frog skeletal muscle fibers were injected with the Ca2+ indicator fura-2 conjugated to high molecular weight dextran (fura dextran, MW approximately 10,000; dissociation constant for Ca2+, 0.52 microM), and the fluorescence was measured from cytoplasm (17 degrees C). The fluorescence excitation spectrum of fura dextran measured in resting fibers was slightly red-shifted compared with the spectrum of the Ca(2+)-free indicator in buffer solutions. A simple comparison of the spectra in the cytoplasm and the in vitro solutions indicates an apparently "negative" cytoplasmic [Ca2+], which probably reflects an alteration of the indicator properties in the cytoplasm. To calibrate the indicator's fluorescence signal in terms of cytoplasmic [Ca2+], we applied beta-escin to permeabilize the cell membrane of the fibers injected with fura dextran. After treatment with 5 microM beta-escin for 30-35 min, the cell membrane was permeable to small molecules (e.g., Ca2+, ATP), whereas the 10-kD fura dextran only slowly leaked out of the fiber. It was thus possible to estimate calibration parameters in the indicator fluorescence in the fibers by changing the bathing solution [Ca2+] to various levels; the average values for the fraction of Ca(2+)-bound indicator in the resting fibers and the dissociation constant for Ca2+ (KD) were, respectively, 0.052 and 1.0 microM. For the comparison, the KD value was also estimated by a kinetic analysis of the indicator fluorescence change after an action potential stimulation in intact muscle fibers, and the average value was 2.5 microM. From these values estimated in the fibers, resting cytoplasmic [Ca2+] in frog skeletal muscle fibers was calculated to be 0.06-0.14 microM. The range lies between the high estimates from other tetracarboxylate indicators (0.1-0.3 microM; Kurebayashi, N., A. B. Harkins, and S. M. Baylor. 1993. Biophysical Journal. 64:1934-1960; Harkins, A. B., N. Kurebayashi, and S. M. Baylor. 1993. Biophysical Journal. 65:865-881) and the low estimate from the simultaneous use of aequorin and Ca(2+)-sensitive microelectrodes (< 0.04-0.06 microM; Blatter, L. A., and J. R. Blinks. 1991. Journal of General Physiology. 98:1141-1160) recently reported for resting cytoplasmic [Ca2+] in frog muscle fibers.  相似文献   

14.
The ionic currents of clonal Y-1 adrenocortical cells were studied using the whole-cell variant of the patch-clamp technique. These cells had two major current components: a large outward current carried by K ions, and a small inward Ca current. The Ca current depended on the activity of two populations of Ca channels, slow (SD) and fast (FD) deactivating, that could be separated by their different closing time constants (at -80 mV, SD, 3.8 ms, and FD, 0.13 ms). These two kinds of channels also differed in (a) activation threshold (SD, approximately -50 mV; FD, approximately -20 mV), (b) half-maximal activation (SD, between -15 and -10 mV; FD between +10 and +15 mV), and (c) inactivation time course (SD, fast; FD, slow). The total amplitude of the Ca current and the proportion of SD and FD channels varied from cell to cell. The amplitude of the K current was strongly dependent on the internal [Ca2+] and was almost abolished when internal [Ca2+] was less than 0.001 microM. The K current appeared to be independent, or only slightly dependent, of Ca influx. With an internal [Ca2+] of 0.1 microM, the activation threshold was -20 mV, and at +40 mV the half-time of activation was 9 ms. With 73 mM external K the closing time constant at -70 mV was approximately 3 ms. The outward current was also modulated by internal pH and Mg. At a constant pCa gamma a decrease of pH reduced the current amplitude, whereas the activation kinetics were not much altered. Removal of internal Mg produced a drastic decrease in the amplitude of the Ca-activated K current. It was also found that with internal [Ca2+] over 0.1 microM the K current underwent a time-dependent transformation characterized by a large increase in amplitude and in activation kinetics.  相似文献   

15.
We have investigated why fura-2 and Ca(2+)-sensitive microelectrodes report different values for the intracellular free calcium ion concentration ([Ca(2+)]i or its negative log, pCa(i)) of snail neurons voltage-clamped to -50 or -60 mV. Both techniques were initially calibrated in vitro, using calcium calibration solutions that had ionic concentrations similar to those of snail neuron cytoplasm. Pressure injections of the same solutions at resting and elevated [Ca(2+)]i were used to calibrate both methods in vivo. In fura-2-loaded cells these pressure injections generated changes in [Ca(2+)]i that agreed well with those expected from the in vitro calibration. Thus, using fura-2 calibrated in vitro, the average resting [Ca(2+)]i was found to be 38 nM (pCa(i) 7.42 +/- 0.05). With Ca(2+)-sensitive microelectrodes, the first injection of calibration solutions always caused a negative shift in the recorded microelectrode potential, as if the injection lowered [Ca2+]i. No such effects were seen on the fura-2 ratio. When calibrated in vivo the Ca(2+)-sensitive microelectrode gave an average resting [Ca2+]i of approximately 25 nM (pCa(i) 7.6 +/- 0.1), much lower than when calibrated in vitro. We conclude that [Ca(2+)]i in snail neurons is approximately 40 nM and that Ca(2+)-sensitive microelectrodes usually cause a leak at the point of insertion. The effects of the leak were minimized by injection of a mobile calcium buffer.  相似文献   

16.
Calcium-induced calcium release mechanism in guinea pig taenia caeci   总被引:15,自引:1,他引:14       下载免费PDF全文
Fura-2 was used to measure the amount of Ca released from the intracellular Ca store of a saponin-skinned smooth muscle fiber bundle of the guinea pig taenia caeci (width, 150-250 microns) placed in a capillary cuvette at 20-22 degrees C. The amount of Ca actively loaded into the store was assayed when released by the application of 50 mM caffeine and/or 10 microM inositol 1,4,5-trisphosphate (IP3) in the absence of ATP, and was found to have a biphasic dependence on the loading [Ca2+] with a peak near pCa 6. After Ca loading at pCa 6, IP3 released almost all the releasable Ca, whereas caffeine discharged Ca from only approximately 40% of the store. The maximum amount of Ca in the store was some 220 mumol/liter cell water. Ca in the caffeine-releasable store was released approximately exponentially to zero with time when Ca2+ was applied in the absence of ATP, and the rate constant of the Ca-induced Ca release (CICR) increased steeply with the concentration of Ca2+ applied. Increase in [Mg2+] (0.5-5.0 mM) or decrease in pH (7.3-6.7) shifted the relation between pCa and the rate of CICR roughly in parallel toward the lower pCa. An adenine nucleotide increased the rate of the CICR, but it did not change the range of effective [Ca2+]. 5 mM caffeine greatly enhanced the CICR mechanism, making it approximately 30 times more sensitive to [Ca2+]. However the drug had no Ca-releasing action in the absence of Ca2+. Procaine in millimolar concentrations inhibited the rate of the CICR. These properties are similar to those of the skeletal muscle CICR and ryanodine receptor channels. Rates of the CICR under a physiological ionic milieu were estimated from the results, and a [Ca2+] greater than 1 microM was expected to be necessary for the activation of the Ca release. This Ca sensitivity seems too low for the CICR mechanism to play a primary physiological role in Ca mobilization, unless assisted by other mechanisms.  相似文献   

17.
INTRODUCTION In vascular smooth muscle, as in other types of muscle,an increase in intracellular Ca2 is the immediate triggerfor contraction, which ultimately determines vascular toneand peripheral resistance. In the past 12 years, investiga-tors have …  相似文献   

18.
The Ca(2+) concentration and voltage dependence of the relaxation kinetics of the Na-Ca exchanger after a Ca(2+) concentration jump was measured in excised giant membrane patches from guinea pig heart. Ca(2+) concentration jumps on the cytoplasmic side were achieved by laser flash-induced photolysis of DM-nitrophen. In the Ca-Ca exchange mode a transient inward current is generated. The amplitude and the decay rate of the current saturate at concentrations >10 microM. The integrated current signal, i.e., the charge moved is fairly independent of the amount of Ca(2+) released. The amount of charge translocated increases at negative membrane potentials, whereas the decay rate constant shows no voltage dependence. It is suggested that Ca(2+) translocation occurs in at least four steps: intra- and extracellular Ca(2+) binding and two intramolecular transport steps. Saturation of the amplitude and of the relaxation of the current can be explained if the charge translocating reaction step is preceded by two nonelectrogenic steps: Ca(2+) binding and one conformational transition. Charge translocation in this mode is assigned to one additional conformational change which determines the equilibrium distribution of states. In the Na-Ca exchange mode, the stationary inward current depends on the cytoplasmic Ca(2+) concentration and voltage. The K(m) for Ca(2+) is 4 microM for guinea pig and 10 microM for rat myocytes. The amplitude of the pre-steady-state current and its relaxation saturate with increasing Ca(2+) concentrations. In this mode the relaxation is voltage dependent.  相似文献   

19.
Incubation of rat neutrophils with fura-2-acetoxy-methyl ester (fura-2/AM) resulted in the loading of fura-2 almost exclusively into the cytoplasm. Despite the additional presence of fura-2/AM esterase activity in the granules, only 1.5% of cell-associated fura-2 was located within these organelles. Fura-2 leaked from neutrophils at an acceptably low rate 0.16 +/- 0.05% min-1 at 37 degrees C. At intracellular concentrations of fura-2 up to 500 microM, there was no effect on oxidase activation; although the cellular ATP content was reduced to approximately 50%. The peptide, f-met-leu-phe (fmlp), 1 microM, produced intensity changes of fluorescence excited at 340nm and 380nm which were consistent with a cytoplasmic Ca2+ rise from the resting level of 94 +/- 13nM to 768 +/- 173nM (n = 6). Intracellular concentrations of fura-2 greater than 1mM were required to buffer effectively this rise, and it was estimated that an intracellular fura-2 concentration required for a high signal:autofluorescence ratio (100 microM) the cytoplasmic Ca2+ buffering capacity of the cells was increased by only 10%. The rise in cytoplasmic free Ca2+ induced by the peptide preceded activation of the oxidase by several seconds, and the magnitude of the response was dependent on the extent of the Ca2+ rise, half-maximal activation being achieved at approx. 600nM. These data were therefore consistent with a secondary messenger role for cytoplasmic Ca2+ in triggering neutrophil oxidase activation.  相似文献   

20.
The effects of high intracellular concentrations of various calcium buffers on the myoplasmic calcium transient and on the rate of release of calcium (Rrel) from the sarcoplasmic reticulum (SR) were studied in voltage-clamped frog skeletal muscle fibers. The changes in intracellular calcium concentration (delta[Ca2+]) for 200-ms pulses to 0-20 mV were recorded before and after the injection of the calcium buffer and the underlying Rrel was calculated. If the buffer concentration after the injection was high, the initial rate of rise of the calcium transient was slower after injection than before and was followed by a slow increase of [Ca2+] that resembled a ramp. The increase in myoplasmic [Mg2+] that accompanies the calcium transient in control was suppressed after the injection and a slight decrease was observed instead. After the injection the buffer concentration in the voltage-clamped segment of the fiber decreased as the buffer diffused away toward the open ends. The calculated apparent diffusion coefficient for fura-2 (Dapp = 0.40 +/- 0.03 x 10(-6) cm2/s, mean +/- SEM, n = 6) suggests that approximately 65-70% of the indicator was bound to relatively immobile intracellular constituents. As the concentration of the injected buffer decreased, the above effects were reversed. The changes in delta[Ca2+] were underlined by characteristic modification of Rrel. The early peak component was suppressed or completely eliminated; thus, Rrel rose monotonically to a maintained steady level if corrected for depletion. If Rrel was expressed as percentage of SR calcium content, the steady level after injection did not differ significantly from that before. Control injections of anisidine, to the concentration that eliminated the peak of Rrel when high affinity buffers were used, had only a minor effect on Rrel, the peak was suppressed by 26 +/- 5% (mean +/- SE, n = 6), and the steady level remained unchanged. Thus, the peak component of Rrel is dependent on a rise in myoplasmic [Ca2+], consistent with calcium-induced calcium release, whereas the steady component of Rrel is independent of myoplasmic [Ca2+].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号