首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The repression and derepression of leucine, isoleucine, and valine transport in Escherichia coli K-12 was examined by using strains auxotrophic for leucine, isoleucine, valine, and methionine. In experiments designed to limit each of these amino acids separately, we demonstrate that leucine limitation alone derepressed the leucine-binding protein, the high-affinity branched-chain amino acid transport system (LIV-I), and the membrane-bound, low-affinity system (LIV-II). This regulation did not seem to involve inactivation of transport components, but represented an increase in the differential rate of synthesis of transport components relative to total cellular proteins. The apparent regulation of transport by isoleucine, valine, and methionine reported elsewhere was shown to require an intact leucine, biosynthetic operon and to result from changes in the level of leucine biosynthetic enzymes. A functional leucyl-transfer ribonucleic acid synthetase was also required for repression of transport. Transport regulation was shown to be essentially independent of ilvA or its gene product, threonine deaminase. The central role of leucine or its derivatives in cellular metabolism in general is discussed.  相似文献   

2.
Isolation of mutants lacking branched-chain amino acid transaminase.   总被引:1,自引:0,他引:1  
Variants of the Chinese hamster ovary cell have been isolated which can no longer grow when valine, leucine, or isoleucine is replaced in the culture medium by its respective alpha-keto acid: alpha-ketoisovaleric acid, alpha-ketoisocaproic acid, or alpha-keto-beta-methylvaleric acid. These variants lack branched-chain amino acid transaminase activity. Evidence is presented indicating these variants to be single gene mutants. Genetic evidence is also presented confirming previous biochemical evidence that a single enzyme carries out transaminase functions on valine, leucine, and isoleucine. The branched-chain transaminase-deficient (trans-) mutants can be reverted to wild-type behavior by treatment with mutagenic agents. These mutants promise to be useful in exploring regulatory mechanisms in biochemical, genetic, and cancer research.  相似文献   

3.
We investigated the relationship between two regulatory genes, livR and lrp, that map near min 20 on the Escherichia coli chromosome. livR was identified earlier as a regulatory gene affecting high-affinity transport of branched-chain amino acids through the LIV-I and LS transport systems, encoded by the livJ and livKHMGF operons. lrp was characterized more recently as a regulatory gene of a regulon that includes operons involved in isoleucine-valine biosynthesis, oligopeptide transport, and serine and threonine catabolism. The expression of each of these livR- and lrp-regulated operons is altered in cells when leucine is added to their growth medium. The following results demonstrate that livR and lrp are the same gene. The lrp gene from a livR1-containing strain was cloned and shown to contain two single-base-pair substitutions in comparison with the wild-type strain. Mutations in livR affected the regulation of ilvIH, an operon known to be controlled by lrp, and mutations in lrp affected the regulation of the LIV-I and LS transport systems. Lrp from a wild-type strain bound specifically to several sites upstream of the ilvIH operon, whereas binding by Lrp from a livR1-containing strain was barely detectable. In a strain containing a Tn10 insertion in lrp, high-affinity leucine transport occurred at a high, constitutive level, as did expression from the livJ and livK promoters as measured by lacZ reporter gene expression. Taken together, these results suggest that Lrp acts directly or indirectly to repress livJ and livK expression and that leucine is required for this repression. This pattern of regulation is unusual for operons that are controlled by Lrp.  相似文献   

4.
Mutants of Escherichia coli K-12 requiring high concentrations of branched-chain amino acids for growth were isolated. One of the mutants was shown to be defective in transport activity for branched-chain amino acids. The locus of the mutation (hrbA) was mapped at 8.9 min on the E. coli genetic map by conjugational and transductional crosses. The gene order of this region is proC-hrbA-tsx. The hrbA system was responsible for the uptake activity of cytoplasmic membrane vesicles. It was not repressed by leucine. The substrate specificities and kinetics of the uptake activities were studied using cytoplasmic membrane vesicles and intact cells of the mutants grown in the presence or absence of leucine. Results showed that there are three transport systems for branched-chain amino acids, LIV-1, -2, and -3. The LIV-2 and -3 transport systems are low-affinity systems, the activities of which are detectable in cytoplasmic membrane vesicles. The systems are inhibited by norleucine but not by threonine. The LIV-2 system is also repressed by leucine. The LIV-1 transport system is a high-affinity system that is sensitive to osmotic shock. When the leucine-isoleucine-valine-threonine-binding protein is derepressed, the high-affinity system can be inhibited by threonine.  相似文献   

5.
The livR locus, which leads to a trans-recessive derepression of branched-chain amino acid transport and periplasmic branched-chain amino acid-binding proteins, is responsible for greatly increased sensitivity toward growth inhibition by leucine, valine, and serine and, as shown previously, for increased sensitivity toward toxicity by branched-chain amino acid analogues, such as 4-azaleucine or 5',5',5'-trifluoroleucine. These phenotypes are similar to those of relA mutants; however, the livR mutants retain the stringent response of ribonucleic acid synthesis. However, an increase in the rate of transport or in the steady-state intracellular level of amino acids in the livR strain cannot completely account for this sensitivity. The ability of the LIV-I transport system to carry out exchange of pool amino acids for extracellular leucine is a major factor in leucine sensitivity. The previous finding that inhibition of threonine deaminase by leucine contributes to growth inhibition is confirmed by simulating the in vivo conditions using a toluene-treated cell preparation with added amino acids at levels corresponding to the internal pool. The relationship between transport systems and corresponding biosynthetic pathways is discussed and the general principle of a coordination in the regulation of transport and biosynthetic pathways is forwarded. The finding that the LIV-I transport system functions well for amino acid exchange in contrast to the LIV-II system provides another feature that distinguishes these systems in addition to previously described differences in regulation and energetics.  相似文献   

6.
Multiple defects in Escherichia coli mutants lacking HU protein.   总被引:23,自引:12,他引:11       下载免费PDF全文
The HU protein isolated from Escherichia coli, composed of two partially homologous subunits, alpha and beta, shares some of the properties of eucaryotic histones and is a major constituent of the bacterial nucleoid. We report here the construction of double mutants totally lacking both subunits of HU protein. These mutants exhibited poor growth and a perturbation of cell division, resulting in the formation of anucleate cells. In the absence of HU, phage Mu was unable to grow, to lysogenize, or to carry out transposition.  相似文献   

7.
8.
9.
The Escherichia coli K-12 mutant strain AE4107 (livH::Mu) is defective in the high-affinity binding protein-mediated uptake system for L-leucine, L-valine, and L-isoleucine (LIV-I). We have used this strain to produce mutations in the residual LIV-II membrane-bound branched-chain amino acid uptake system. Mutants selected for their inability to utilize exogenous L-leucine were found to be defective in the LIV-II system and fell into two classes. One class, represented by strain AE410709 (livP9), showed a complete loss of saturable uptake for L-leucine, L-valine, and L-isoleucine up to 50 muM, and a second class, represented by strain AE4017012 (liv-12), showed a residual component of saturable leucine uptake with increased Km. These mutations, livP9 and liv-12, were closely linked and mapped in the 74 to 78 min region of the E. coli genetic map. Strains constructed so that they lacked both LIV-I and LIV-II transport systems excreted leucine. Strains of the genotype livH+ livP were found to have normal high-affinity binding protein-mediated transport (LIV-I and leucine specific), whereas the low-affinity (LIV-II) transport was completely missing. We concluded from these studies that the high-affinity binding protein-mediated transport systems (LIV-I and leucine specific) can operate independently of the membrane-bound LIV-II system.  相似文献   

10.
Two mutant loci resulting in derepression of, respectively, the L-leucine-specific transport system (lstR) and both the leucine-specific and the general branched-chain amino acid transport LIV-I systems (livR) were mapped by conjugation and transduction. Both livR and lstR were found to be closely linked to aroA at min 20 on the Escherichia coli genetic map. The merodiploid livR+/livR displayed wild-type regulation of L-leucine transport, indicating that the livR product is a diffusible, negative controlling element for high-affinity leucine transport systems. Isogenic strains carrying lstR, livR, and wild-type transport alleles were compared for leucine uptake kinetic parameters and leucine-binding protein levels. The higher levels of leucine transport in the mutant strains under repressing conditions were generally due to increased high-affinity systems, which were accompanied by striking increases in the level of leucine-binding proteins.  相似文献   

11.
The regulation of the aromatic amino acid transport systems was investigated. The common (general) aromatic transport system and the tyrosine-specific transport system were found to be subject to repression control, thus confirming earlier reports. In addition, tryosine- and tryptophan-specific transport were found to be enhanced by growth of cells with phenylalanine. The repression and enhancement of the transport systems was abolished in a strain carrying an amber mutation in the regulator gene tyrR. This indicates that the tyrR gene product, which was previously shown to be involved in regulation of aromatic biosynthetic enzymes, is also involved in the regulation of the aromatic amino acid transport systems.  相似文献   

12.
The characteristics of a mutant (hrbA) of Escherichia coli K-12 that is defective in a leucine-nonrepressible transport system, the LIV-3 system, for branched-chain amino acids were described previously (I. Yamato et al., J. Bacteriol 138:24-32, 1979). New mutants requiring a high concentration of isoleucine for growth were isolated from strain B763 (hrbA ileA) after mutagenesis with ethyl methane sulfonate. These mutants had a defect of the leucine-repressible transport activities for branched-chain amino acids of the parental strain. One of these mutants, strain B7634, had defects of two independent genetic loci (hrbBC and hrbD). The genes hrbBC were mapped at min 76 near malT, and the gene hrbD mapped at min 77 near xyl on the E. coli genetic map. The substrate specificity, kinetic properties, and source of coupling energy of the transport system coded for by each of these genes were studied using cytoplasmic membrane vesicles and intact cells. The results identified three transport systems with characteristic features other than the LIV-3 system. The hrbB and hrbC systems are responsible for the uptake activites of the LIV-2 system, with a high Km value, and the LIV-1 system, with a low Km value, respectively. Both activities are repressed by leucine and inhibited by threonine and the b(--) isomer of 2-aminobicycloheptyl-2-carboxylic acid. They both utilize adenosine 5'-triphosphate as coupling energy and are not detected in cytoplasmic membrane vesicles. The hrbD system is responsible for the LIV-4 system, with a high Km value. Its activity is repressed by leucine and partially inhibited by threonine. It is detected in cytoplasmic membrane vesicles with a proton motive force as the driving energy.  相似文献   

13.
Basic amino acid transport in Escherichia coli   总被引:20,自引:0,他引:20  
  相似文献   

14.
Two new mutations are described which, together, eliminate essentially all the aminotransferase activity required for de novo biosynthesis of tyrosine, phenylalanine, and aspartic acid in a K-12 strain of Escherichia coli. One mutation, designated tyrB, lies at about 80 min on the E. coli map and inactivates the "tyrosine-repressible" tyrosine/phenylalanine aminotransferase. The second mutation, aspC, maps at about 20 min and inactivates a nonrespressible aspartate aminotransferase that also has activity on the aromatic amino acids. In ilvE- strains, which lack the branched-chain amino acid aminotransferase, the presence of either the tyrosine-repressible aminotransferase or the aspartate aminotransferase is sufficient for growth in the absence of exogenous tyrosine, phenylalanine, or aspartate; the tyrosine-repressible enzyme is also active in leucine biosynthesis. The ilvE gene product alone can reverse a phenylalanine requirement. Biochemical studies on extracts of strains carrying combinations of these aminotransferase mutations confirm the existence of two distinct enzymes with overlapping specificities for the alpha-keto acid analogues of tyrosine, phenylalanine, and aspartate. These enzymes can be distinguished by electrophoretic mobilities, by kinetic parameters using various substrates, and by a difference in tyrosine repressibility. In extracts of an ilvE- tyrB- aspC- triple mutant, no aminotransferase activity for the alpha-keto acids of tyrosine, phenylalanine, or aspartate could be detected.  相似文献   

15.
We describe the properties of the binding protein dependent-transport of ribose, galactose, and maltose and of the lactose permease, and the phosphoenolpyruvate-glucose phosphotransferase transport systems in a strain of Escherichia coli which is deficient in the synthesis of lipoic acid, a cofactor involved in alpha-keto acid dehydrogenation. Such a strain can grow in the absence of lipoic acid in minimal medium supplemented with acetate and succinate. Although the lactose permease and the phosphoenolypyruvate-glucose phosphotransferase are not affected by lipoic acid deprivation, the binding protein-dependent transports are reduced by 70% in conditions of lipoic acid deprivation when compared with their activity in conditions of lipoic acid supply. The remaining transport is not affected by arsenate but is inhibited by the uncoupler carbonylcyanide-m-chlorophenylhydrazone; however the lipoic acid-dependent transport is completely inhibited by arsenate and only weakly inhibited by carbonylcyanide-m-chlorophenylhydrazone. The known inhibitor of alpha-keto acid dehydrogenases, 5-methoxyindole-2-carboxylic acid, completely inhibits all binding protein-dependent transports whether in conditions of lipoic supply or deprivation; the results suggest a possible relation between binding protein-dependent transport and alpha-keto acid dehydrogenases and shed light on the inhibition of these transports by arsenicals and uncouplers.  相似文献   

16.
Escherichia coli pilG mutants are thought to have a dramatically higher DNA inversion rate as measured by the site-specific DNA inversion of the type 1 pili pilA promoter. DNA sequence of the pilG gene confirmed its identity to the gene encoding the bacterial histonelike protein H-NS. Unlike other histonelike protein complexes that enhance site-specific DNA recombination, the H-NS protein inhibited this process. This inhibition was indicated by the increased inversion rate of the pilA promoter region effected by two different mutant pilG alleles. One of these alleles, pilG1, conferred a mutant phenotype only at low temperature attributable to a T-to-G transversion in the -35 sequence of the pilG promoter. The other allele, pilG2-tetR, was an insertion mutation in the pilG coding region that conferred the mutant phenotype independent of temperature. We measured an approximately 100-fold-increased pilA promoter inversion rate in the mutant by exploiting the temperature-dependent expression of pilG1 and using a novel rapid-population-sampling method. Contrary to one current view on how the H-NS protein might act to increase DNA inversion rate, we found no evidence to support the hypothesis that DNA supercoiling affected pilA promoter inversion.  相似文献   

17.
The branched-chain amino acid aminotransferase of Escherichia coli was crystallized in two crystal systems, monoclinic and tetragonal, from polyethylene glycol and ammonium sulfate solutions, pH 7.0, respectively. The crystals were of good quality, with diffractions extending beyond 2.8 A. The space group and unit cell dimensions of the monoclinic system crystals were determined from precession photographs to be C2, and a = 93.9, b = 143.6, c = 143.9 A and beta = 134.3 degrees. For the tetragonal system crystals, the possible space group P422 or P4122, and cell dimensions of a = b = 101 A and c = 249 A were determined. Three identical subunits exist per an asymmetric unit in both types of crystals.  相似文献   

18.
Studies on amino acid binding proteins of Escherichia coli   总被引:1,自引:0,他引:1  
  相似文献   

19.
Membrane-derived oligosaccharides (MDO) consist of branched substituted beta-glucan chains and are present in the periplasmic space of Escherichia coli and other gram-negative bacteria. A procedure for the isolation of mutants defective in MDO synthesis is described. Their phenotype was compared with a mdoA mutant previously identified, and they are mapped in the mdoA region. Mutants lacking MDO showed imparied chemotaxis on tryptone swarm plates, a reduced number of flagella, and an enhanced expression of the OmpC porin. Revertants able to form swarm rings again had regained the ability to synthesize MDO and showed the wild-type porin pattern. A second group of chemotactic revertants were mutated in the ompB gene region involved in osmoregulation, and they were still devoid of MDO. These findings provide evidence for a link between MDO biosynthesis and other functions of E. coli related to its adaptation to the environment.  相似文献   

20.
Summary The regulation of catabolite repression of -galactosidase has been studied in Escherichia coli mutants deleted for the adenyl cyclase gene (cya ), and thus unable to synthesize cyclic AMP. It has been found that, provided a second mutation occurs either in the crp gene coding for the catabolite gene activator protein (CAP) or in the Lactose region, these mutants exhibit catabolite repression. If the catabolite repression seen in the mutant strains corresponds to the mechanism operating in wild-type cells, the results would suggest that the intracellular concentration of cyclic AMP cannot be the unique regulator of catabolite repression.Jacques Monod was still with us when most of the work described in this and the following paper was accomplished. His constant interest, his unfailing advice, his warm support, were invaluable. It will be difficult for us to ever enjoy a successful experiment without regretting that he cannot share this pleasure with us.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号