首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibody and T cell receptor genes are assembled from gene segments by V(D)J recombination to produce an almost infinitely diverse repertoire of antigen specificities. Recombination is initiated by cleavage of conserved recombination signal sequences (RSS) by RAG1 and RAG2 during lymphocyte development. Recent evidence demonstrates that recombination can occur at noncanonical RSS sites within Ig genes or at other loci, outside the context of normal lymphocyte receptor gene rearrangement. We have characterized the ability of the RAG proteins to bind and cleave a cryptic RSS (cRSS) located within an Ig V(H) gene segment. The RAG proteins bound with sequence specificity to either the consensus RSS or the cRSS. The RAG proteins nick the cRSS on both the top and bottom strands, thereby bypassing the formation of the DNA hairpin intermediate observed in RAG cleavage of canonical RSS substrates. We propose that the RAG proteins may utilize an alternative mechanism for double-stranded DNA cleavage, depending on the substrate sequence. These results have implications for further diversification of the antigen receptor repertoire as well as the role of the RAG proteins in genomic instability.  相似文献   

2.
O Bernard  N Hozumi  S Tonegawa 《Cell》1978,15(4):1133-1144
We have determined the nucleotide sequences of the germ line gene as well as a corresponding somatically mutated and rearranged gene coding for a mouse immunoglobulin lambdaI type light chain. These sequencing studies were carried out on three Eco RI-DNA fragments which had been cloned from BALB/c mouse embryos or a lambdaI chainsecreting myeloma, H2020. The embryonic DNA clone Ig 99lambda contains two protein-encoding segments, one for the majority of the hydrophobic leader (L) and the other for the rest of the leader and the variable (V) region of the lambda0 chain (Cohn et al., 1974); these segments are separated by a 93 base pair (bp) intervening sequence (I-small). The coding of the V region ends with His at residue 97. The second embryonic DNA clone Ig 25lambda includes a 39 bp DNA segment (J) coding for the rest of the conventionally defined V region (that is, up to residue 110), and also contains the sequence coding for the constant (C) region approximately 1250 untranslated bp (I-large) away from the J sequence. The J sequence is directly linked with the V-coding sequence in the myeloma DNA clone, Ig 303lambda, which has the various DNA segments arranged in the following order: 5' untranslated region, L, l-small, V linked with J, l-large, C, 3' untranslated sequence. The lg 303lambda V DNA sequence codes for the V region synthesized by the H2020 myeloma and is different from the lg 99lambda V DNA sequence by only two bases. No silent base change was observed between the two DNA clones for the entire sequence spanning the 5' untranslated regions and the V-coding segments. These results confirm the previously drawn conclusion that an active complete lambdaI gene arises by somatic recombination that takes place at the ends of the V-coding DNA segment and the J sequence. No sequence homology was observed at or near the sites of the recombination.  相似文献   

3.
4.
RAG1 and RAG2 initiate V(D)J recombination by introducing DNA double strand breaks between each selected gene segment and its bordering recombination signal sequence (RSS) in a two-step mechanism in which the DNA is first nicked, followed by hairpin formation. The RSS consists of a conserved nonamer and heptamer sequence, in which the latter borders the site of DNA cleavage. A region within RAG1, referred to as the central domain (residues 528-760 of 1040 in the full-length protein), has been shown previously to bind specifically to the double-stranded (ds) RSS heptamer, but with both weak specificity and affinity. However, additional investigations into the RAG1-RSS heptamer interaction are required because the DNA substrate forms intermediate conformations during the V(D)J recombination reaction. These include the nicked and hairpin products, as well as likely base unpairing to produce single-stranded (ss) DNA near the cleavage site. Here, it was determined that although the central domain showed substantially higher binding affinity for ss and nicked versus ds substrate, the interaction with ss RSS was particularly robust. In addition, the central domain bound with greater sequence specificity to the ss RSS heptamer than to the ds form. This study provides important insight into the V(D)J recombination reaction, specifically that significant interaction of the RSS heptamer with RAG1 occurs only after the induction of conformational changes at the RSS heptamer.  相似文献   

5.
Much of the nonrandom usage of V, D, and J genes in the Ab repertoire is due to different frequencies with which gene segments undergo V(D)J rearrangement. The recombination signal sequences flanking each segment are seldom identical with consensus sequences, and this natural variation in recombination signal sequence (RSS) accounts for some differences in rearrangement frequencies in vivo. Here, we have sequenced the RSS of 19 individual V(H)7183 genes, revealing that the majority have one of two closely related RSS. One group has a consensus heptamer, and the other has a nonconsensus heptamer. In vitro recombination substrate studies show that the RSS with the nonconsensus heptamer, which include the frequently rearranging 81X, rearrange less well than the RSS with the consensus heptamer. Although 81X differs from the other 7183-I genes at three positions in the spacer, this does not significantly increase its recombination potency in vitro. The rearrangement frequency of all members of the family was determined in microMT mice, and there was no correlation between the in vitro recombination potential and V(H) gene rearrangement frequency in vivo. Furthermore, genes with identical RSS rearrange at different frequencies in vivo. This demonstrates that other factors can override differences in RSS potency in vivo. We have also determined the gene order of all V(H)7183 genes in a bacterial artificial chromosome contig and show that most of the frequently rearranging genes are in the 3' half of the region. This suggests that chromosomal location plays an important role in nonrandom rearrangement of the V(H)7183 genes.  相似文献   

6.
During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the "nonamer binding region," which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease.  相似文献   

7.
8.
Darlow JM  Stott DI 《Immunogenetics》2006,58(7):511-522
Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V(H) segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V(H) replacements with no addition of untemplated nucleotides at the V(H)-V(H) joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V(H) replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion.  相似文献   

9.
A novel Ig H chain gene rearrangement, a VHDJH to JH joining, was observed in an Ig-null immature B cell line. The preexisting, nonproductive VHDJH complex was replaced by the productive VHJH complex which was generated by the novel joining between the rearranged VH and a germ line JH gene. This VHDJH to JH joining is thought to be a site-specific recombinational event mediated by a putative recombination signal sequence, CACAGCC-12-base-GCAAGAAAG, embedded in the rearranged VH gene including the N region. This sequence might be a novel recombination signal sequence, which had not yet been reported, for so-called recombinase.  相似文献   

10.
In order to isolate cDNA clones for DNA-binding components of the V-(D)-J recombinase, phage libraries from a pre-B-cell line were screened with a radiolabeled probe containing recombination signal sequences (RSS). Among prospective clones, cDNA T160 was analyzed further. It produced a protein of 80.6 kDa which bound to DNA containing RSS but not to DNA in which the RSS had been mutated. A search of a data base revealed that the T160 protein has significant sequence homology (56%) to the nonhistone chromosomal protein HMG1 within the C-terminal region of 80 amino acids. DNA-binding analysis with truncated proteins showed that the HMG homology region is responsible for DNA binding. Using restriction fragment length polymorphisms, the T160 gene was mapped at the proximal end of mouse chromosome 2. Evidence was obtained for genetic linkage between the T160 gene and the recombination activator genes RAG-1 and RAG-2.  相似文献   

11.
A cDNA library was constructed from the mRNA of the Ig lambda producing Burkitt's lymphoma cell line, EB4. Overlapping clones encompassing the coding sequence of the Ig lambda mRNA were isolated and sequenced. The predicted amino acid sequence shows a short hydrophobic leader peptide and a mature polypeptide of 217 residues in which V, J and C regions can be distinguished. The V region belongs to subgroup VI and has greatest homology (80%) with the Amyloid-AR protein. The constant region is the Kern- Oz+ isotype. Probing normal human DNA with the subcloned V lambda coding sequence detects one gene at high stringency and a family of 11 members at low stringency. To date, no restriction enzyme site polymorphisms have been detected. The V lambda VI gene is rearranged on both chromosomes of EB4 and is deleted on both chromosomes in the Burkitt's lymphoma cell line BL2.  相似文献   

12.
The epidermal growth factor receptor (EGFR) is a membrane-bound, 170 kDa, protein tyrosine kinase that plays an important role in tumorigenesis. The EGFR gene, which is composed of over 168 kb of sequence, including a 123-kb first intron, is frequently amplified and rearranged in malignant gliomas leading to the expression of oncogenic deletion (DM) and tandem duplication (TDM) mutants. The most common DM in gliomas is EGFRvIII, which arises from recombination between introns 1 and 7 with deletion of exons 2 through 7 and intervening introns. In addition, some human gliomas express 180- to 190-kDa TDM, which are constitutively active and highly oncogenic. Both DM and TDM arise by recombination of introns that contain sequences with homology to the recombination signal sequence (RSS) heptamers and nonamers present in the V(D)J region of the immunoglobin and T lymphocyte antigen receptor genes. V(D)J RSS have also been identified in certain proto-oncogenes like bcl-2 that are involved in translocations associated with the development of human lymphomas and in other genes such as hypoxanthine-guainine phosphoribosyl transferase (HPRT) in which deletion mutations and intron rearrangements are a common phenomenon. Together with the expression of recombination associated gene (RAG) and nonhomologous end-joining (NHEJ) proteins in gliomas, these observation suggest that aberrant activity of the V(D)J recombinase may be involved in the activation of proto-oncogenes in both liquid and solid tumors.  相似文献   

13.
14.
Nonintegrated, circular DNA molecules of Herpesvirus saimiri and Herpesvirus ateles were found in five lymphoid cell lines originating from tumor tissues or established by in vitro immortalization of T lymphocytes. The arrangement of unique (L) and repetitive (H) DNA sequences in circular viral genomes was analyzed by partial denaturation mapping followed by visualization with an electron microscope. Three types of circular viral DNA structures were found. (i) The virus-producing cell line RLC, which is derived from an H. ateles-induced rabbit lymphoma, contains circular viral genomes which consist of a single L-DNA and a single H-DNA region, both the same length as in virion DNA. (ii) The circular viral genomes of the nonproducer cell lines H1591 and A1601, in vitro transformed by H. saimiri and H. ateles, respectively, have deletions in the unique L-DNA region and larger H-DNA regions. Cell line A1601 lacks about 8% of virion L-DNA, and H1591 cells lack about 40% of viral L-DNA information. (iii) The nonproducing H. saimiri tumor cell lines 1670 and 70N2 harbor viral genomes with two L-DNA and two H-DNA regions, respectively. Both types of circular molecules have a long and a short L-segment. The sequence arrangements of circular DNA molecules from H. saimiri-transformed cell lines were compared with those of linear virion DNA by computer alignment of partial denaturation histograms. The L-DNA deletion in cell line H1591 was found to map in the right half of the virion DNA. Comparison of the denaturation patterns of both L regions of cell lines 1670 and 70N2 identified the short L regions as subsets of the long L regions. Thus, circular viral DNA molecules of all four nonproducer cell lines represent defective genomes.  相似文献   

15.
Each V, D, and J gene segment is flanked by a recombination signal sequence (RSS), composed of a conserved heptamer and nonamer separated by a 12- or 23-bp spacer. Variations from consensus in the heptamer or nonamer at specific positions can dramatically affect recombination frequency, but until recently, it had been generally held that only the length of the spacer, but not its sequence, affects the efficacy of V(D)J recombination. In this study, we show several examples in which the spacer sequence can significantly affect recombination frequencies. We show that the difference in spacer sequence alone of two V(H)S107 genes affects recombination frequency in recombination substrates to a similar extent as the bias observed in vivo. We show that individual positions in the spacer can affect recombination frequency, and those positions can often be predicted by their frequency in a database of RSS. Importantly, we further show that a spacer sequence that has an infrequently observed nucleotide at each position is essentially unable to support recombination in an extrachromosmal substrate assay, despite being flanked by a consensus heptamer and nonamer. This infrequent spacer sequence RSS shows only a 2-fold reduction of binding of RAG proteins, but the in vitro cleavage of this RSS is approximately 9-fold reduced compared with a good RSS. These data demonstrate that the spacer sequence should be considered to play an important role in the recombination efficacy of an RSS, and that the effect of the spacer occurs primarily subsequent to RAG binding.  相似文献   

16.
Characterization of immunoglobulin enhancer deletions in murine plasmacytomas.   总被引:11,自引:1,他引:10  
R J Aguilera  T J Hope    H Sakano 《The EMBO journal》1985,4(13B):3689-3693
We have analyzed enhancer deletions found in murine plasmacytomas by DNA cloning. This analysis revealed that the deletions occurred between the JH region and the switch region, removing the Ig heavy chain enhancer. The loss of the enhancer did not significantly affect the level of heavy chain expression as determined by RNA blots. Nucleotide sequence analysis revealed that there are no characteristic or homologous sequences around the recombination site. Extra nucleotides were found at the recombination sites, in a manner analogous to Ig and T-cell receptor V-D-J joining. The germline JH and switch sequences involved in the deletion were analyzed by the in vitro DNA cleavage system with an endonucleolytic activity purified from mouse fetal liver nuclear extracts. It was found that the germline JH DNA was strongly cleaved at the deletion recombination site.  相似文献   

17.
Immunoglobulins (Ig) secreted from a plasma cell contain either kappa or lambda light chains, but not both. This phenomenon is termed isotypic kappa-lambda exclusion. While kappa-producing cells have their lambda chain genes in germline configuration, in most lambda-producing cells the kappa chain genes are either non-productively rearranged or deleted. To investigate the molecular mechanism for isotypic kappa-lambda exclusion, in particular the role of the Ig kappa intron enhancer, we replaced this enhancer by a neomycin resistance (neoR) gene in embryonic stem (ES) cells. B cells heterozygous for the mutation undergo V kappa-J kappa recombination exclusively in the intact Ig kappa locus but not in the mutated Ig kappa locus. Homozygous mutant mice exhibited no rearrangements in their Ig kappa loci. However, splenic B cell numbers were only slightly reduced as compared with the wild-type, and all B cells expressed lambda chain bearing surface Ig. These findings demonstrate that rearrangement in the Ig kappa locus is not essential for lambda gene rearrangement. We also generated homozygous mutant mice in which the neoR gene was inserted at the 3' end of the Ig kappa intron enhancer. Unexpectedly, mere insertion of the neoR gene showed some suppressive effect on V kappa-J kappa recombination. However, the much more pronounced inhibition of V kappa-J kappa recombination by the replacement of the Ig kappa intron enhancer suggests that this enhancer is essential for V kappa-J kappa recombination.  相似文献   

18.
Human germinal center B cell tumors retain the ability of their nontransformed counterparts to somatically hypermutate Ig V genes by nucleotide substitution. Among a survey of 60 primary previously untreated, clonal, follicular lymphomas we have identified a rare V(H) rearrangement variant and two other in-frame nucleotide insertion/deletion variants within complementarity-determining region III of the Ig heavy chain. The neoplastic origin of the V(H) rearrangement variant was directly demonstrated in cells isolated by microdissection from malignant follicles. In all three cases a common clonal origin for the variants was demonstrated by complementarity-determining region III nucleotide sequence homology and shared somatic mutations in germline encoded positions in framework region IV. The monoclonal nature of the tumors was independently confirmed by demonstrating a single t(14;18) translocation breakpoint in the two cases with a detectable translocation. All the variants occurred in functional V(H) rearrangements, which in two cases were directly shown to encode functional Ab molecules. Both recombination-activating genes 1 and 2 were expressed in lymph node tumor cells containing the V(H) rearrangement variant, although recombination-activating gene expression among a panel of lymphomas was not limited to this variant.  相似文献   

19.
Homologous recombination accomplishes the exchange of genetic information between two similar or identical DNA duplexes. It can occur either by gene conversion, a process of unidirectional genetic exchange, or by reciprocal crossing over. Homologous recombination is well known for its role in generating genetic diversity in meiosis and, in mitosis, as a DNA repair mechanism. In the immune system, the evidence suggests a role for homologous recombination in Ig gene evolution and in the diversification of Ab function. Previously, we reported the occurrence of homologous recombination between repeated, donor and recipient alleles of the Ig H chain mu gene C (Cmu) region residing at the Ig mu locus in mouse hybridoma cells. In this study, we constructed mouse hybridoma cell lines bearing Cmu region heteroalleles to learn more about the intrachromosomal homologous recombination process. A high frequency of homologous recombination (gene conversion) was observed for markers spanning the entire recipient Cmu region, suggesting that recombination might initiate at random sites within the Cmu region. The Cmu region heteroalleles were equally proficient as either conversion donors or recipients. Remarkably, when the same Cmu heteroalleles were tested for recombination in ectopic genomic positions, the mean frequency of gene conversion was reduced by at least 65-fold. These results are consistent with the murine IgH mu locus behaving as a hot spot for intrachromosomal homologous recombination.  相似文献   

20.
Small polydisperse circular (spc) DNA was isolated from mouse thymocytes, fragmented by HindIII digestion and cloned into the vector. Sixty DNA clones were randomly selected from the 10,400 phage library. The average size of insert was one-fifth of the original circular molecule. Twenty spc-DNA clones were homologous to DNA probes derived from T-cell antigen receptor (TCR) alpha-chain loci. We have characterized nine clones by DNA sequencing; they contain new germline sequences of the TCR alpha-chain variable (V alpha) and joining (J alpha) gene segments and the products out of the recombination of a V alpha with a J alpha gene segment. An additional four spc-DNA clones carried a new rearranging gene of the TCR delta-chain that is located between V alpha and J alpha genes. At least nine of 60 DNA clones carried the recombination junction of a heptamer-heptamer head-to-head structure expected from an excised product of V-J joining. This shows that most extrachromosomal circular DNAs in the thymus are formed by a sequence-dependent recombination mechanism. We suggest that a functional T-cell receptor V alpha gene can be constructed by somatic random rearrangements through successive looping-out, excision and deletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号