首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fatty acid metabolism of isolated mammalian cells   总被引:5,自引:0,他引:5  
It is now clear that a wide variety of differentiated cells in culture exhibit essentially the full spectrum of mammalian fatty acid metabolism. These cells readily incorporate free fatty acids into membrane phosphoglycerides, modify exogenous fatty acids by desaturation and elongation, and store excess fatty acyl groups, primarily as triacylglycerols. Similarly, many different types of cells synthesize cyclooxygenase and lipoxygenase derivatives of long chain polyunsaturated fatty acids. Furthermore, although the fatty acid composition of cellular phospholipids can be modified by medium supplementation, cells in culture exhibit definite fatty acyl specificities for the various steps of fatty acid activation, transesterification and release. As the extensive repertoire of fatty acid metabolism in mammalian cells has been elucidated, and as the ability to grow differentiated cells in culture has increased, new questions have arisen. There is still much to be learned about the enzymes involved in synthesizing and maintaining the unique fatty acid composition of the different cellular phospholipids and the processes which regulate the desaturation, elongation and retroconversion of polyunsaturated fatty acids. Other areas of great current interest are the mechanisms by which certain long chain polyunsaturated fatty acids are made available for conversion to oxygenated, biologically-active derivatives, the metabolic interactions between different polyunsaturated fatty acids, particularly n-3 and n-6 fatty acids, the cellular roles of the C22 polyunsaturated fatty acids, and the functions of particular molecular species of phospholipids in membrane-mediated events. Further research in these areas will contribute to unravelling the role of fatty acids and fatty acid derivatives in the physiological processes of mammalian cells.  相似文献   

2.
Seasonal changes in the fatty acid composition of neutral and polar lipids were measured in the ovary, liver, white muscle, and adipopancreatic tissue of northern pike. The role of environmental and physiological factors underlying these changes was evaluated. From late summer (August–September) to winter (January–March), the weight percentage of n-3 polyunsaturated fatty acids (especially 22:6n3) declined significantly in the neutral lipids of all somatic tissues examined. However, large quantities of n-3 polyunsaturated fatty acids accumulated in the recrude cing ovaries during fall and the weight percentage of n-3 polyunsaturated fatty acids in ovary polar lipids also increased significantly. Additionally, the n-3 polyunsaturated fatty acid content of somatic polar lipids increased significantly during fall due to increases in the total polar lipid content of the somatic tissues. This suggests that during fall n-3 polyunsaturated fatty acid are diverted away from somatic neutral lipids and thereby conserved for use in ovary construction and for incorporation into tissue polar lipids. The percentage of n-3 polyunsaturated fatty acid in ovary neutral lipids also declined during fall and early winter, perhaps as an adaptation to conserve these fatty acids for storage in oocyte polar lipids and later incorporation into cellular membranes of the developing embryo. Reductions in the n-3 polyunsaturated fatty acids content of somatic and ovarian neutral lipids during fall were compensated for specifically by increases in the percentage of monounsaturated fatty acids rather than saturated fatty acids. This suggests that the ratio of saturated to unsaturated fatty acids in pike neutral lipid, is regulated physiologically, and hence may influence the physiological functioning of these lipids. During fall and early winter the percentage of saturated fatty acids declined significantly in the polar lipids of all tissues examined. This change was consistent with the known effects of cold acclimation on the fatty acid composition of cellular membranes. As the ovaries were recrudescing from September to January, liver polar lipids exhibited significant decreases in the percentage of total polyunsaturated fatty acids and n-3 polyunsaturated fatty acids and increases in monounsaturated fatty acids, and acquired a fatty acid composition very similar to that of ovary polar lipids. Therefore, seasonal changes in the percentage of polyunsaturated and monounsaturated fatty acids in liver polar lipids probably reflect the liver's role in vitellogenesis rather than the effects of temperature on membrane fatty acid composition. At all times of year, the fatty acid compositions of white muscle and adipopancreatic tissue neutral lipids were very similar, which may indicate a close metabolic relationship between these lipid compartments.Abbreviations AP adipopancreatic - BHT butylated hydroxytoluene - CI confidence interval - EFA essential fatty acids - MUFA monounsaturated fatty acids - NL neutral lipids - PL polar lipids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids  相似文献   

3.
The barrier function of the skin is provided by the stratum corneum (SC), the outermost layer of the skin. Ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs) are present in SC and form highly ordered crystalline lipid lamellae. These lamellae are crucial for a proper skin barrier function. In the present study, Fourier transform infrared spectroscopy was used to examine the lipid organization of mixtures prepared from synthetic CERs with CHOL and FFAs. The conformational ordering and lateral packing of these mixtures showed great similarities to the lipid organization in SC and lipid mixtures prepared with native CERs. Therefore, mixtures with synthetic CERs serve as an excellent tool for studying the effect of molecular architecture of CER subclasses on the lipid phase behavior. In SC the number of OH-groups in the head groups of CER subclasses varies. Furthermore, acylCERs with a linoleic acid chemically bound to a long acyl chain are also identified. The present study revealed that CER head group architecture affects the lateral packing and conformational ordering of the CER:CHOL:FFA mixtures. Furthermore, while the majority of the lipids form a crystalline packing, the linoleate moiety of the acylCERs participates in a “pseudo fluid” phase.  相似文献   

4.
The lipids of the brown alga Fucus serratus were isolated, identified and quantified. The major acyl lipids were the three glycosylglycerides, diacylgalactosylglycerol, diacyldigalactosylglycerol and diacylsulphoquinovosylglycerol. These represent over 70% of the total acyl lipids. The fatty acid compositions of the major lipids were examined and most showed rather distinctive fatty acid contents. For example, diacylgalactosylglycerol was enriched in n-3 polyunsaturated fatty acids while phosphatidylcholine and phosphatidylethanolamine had very high levels of arachidonate. Phosphatidylglycerol contained the unusual trans-Δ3-hexadecenoic acid. The labelling of lipids and fatty acids from [14C]acetate was examined and the distribution of label between individual components as a function of the incubation period and in algae collected at different times of the year is reported. Algae collected in the winter incorporated much more radioactivity into non-esterified fatty acids when compared to algae collected in the summer. All algae could label myristate, palmitate, stearate and oleate at high rates. Longer incubation times allowed the labelling of polyunsaturated fatty acids such as linoleic acid.  相似文献   

5.
The skin displays a highly active metabolism of polyunsaturated fatty acids (PUFA). Dietary deficiency of linoleic acid (LA), an 18-carbon (n-6) PUFA, results in characteristic scaly skin disorder and excessive epidermal water loss. Although arachidonic acid (AA), a 20-carbon (n-6) PUFA, is metabolized via cyclooxygenase pathway into predominantly prostaglandin E2 (PGE2) and PGF2alpha. The 15-lipoygenase is very active in this tissue and catalyzes the transformation of 20-carbon AA into predominantly 15-hydroxyeicosatetraenoic acid (15-HETE). Similarly, the epidermal 15-lipoxygenase also catalyzes the transformation of 18-carbon LA and 20-carbon dihomo-gamma-linolenic acid (DGLA) to 13-hydroxyoctadecadienoic acid (13-HODE) and 15-hydroxyeicosatrienoic acid (15-HETrE), respectively. The monohydroxy fatty acids are incorporated in phospholipids which undergo catalysis to yield substituted-diacylglycerols (13-HODE-DAG) and 15-HETrE-DAG) which exert anti-inflammatory/antiproliferative effects on the skin.  相似文献   

6.
Two different lipoxygenases have been identified in human and rat epidermis. One lipoxygenase has a (n-9)-specificity, converts arachidonic acid into 12-hydroxyeicosatetraenoic acid (12-HETE), and has been described by several investigators. Linoleic acid is not a substrate for this enzyme. The other lipoxygenase, with (n-6)-specificity, converts arachidonic acid into 15-HETE and linoleic acid into 13-hydroxyoctadecadienoic acid (13-HOD). Especially the latter lipoxygenase is thought to be involved in the regulation of the differentiation of the skin cells into a proper water-barrier layer. Linoleate is supposed to be the physiological substrate; this fatty acid is especially present in characteristic sphingolipids with unique structures.  相似文献   

7.
The rabbit heart contains a cytosolic enzyme which selectively incorporates polyunsaturated fatty acids into phosphatidylcholine. This unique acyltransferase is selective for fatty acids, thus far tested, that are substrates for cyclooxygenase or lipoxygenase (i.e., arachidonic, eicosapentaenoic, linoleic and dihomo-gamma-linoleic acids) or which reverse the symptoms of essential fatty acid deficiency (columbinic acid). On the other hand, palmitic, oleic, 5,8,11-eicosatrienoic (n-9, Mead acid), and docosatetraenoic acid (n-6, adrenic acid) were not incorporated in phospholipids by the cytosolic acyltransferase. No such fatty acid selectivity was exhibited by the cytosolic acyl-CoA synthetase or by the acyltransferase activities present in cardiac microsomes and mitochondria.  相似文献   

8.
Essential fatty acid-deficient rats were supplemented with 300 mg per day of pure fatty acid esters: oleate (O), linoleate (L), arachidonate (A), and columbinate (C) for 10 days. During this period, the rats in groups L, A, and C all showed a decrease in their initially high trans-epidermal water loss, a classical essential fatty acid-deficiency symptom, to a level seen in non-deficient rats (group N). The trans-epidermal water loss in rats of group O was unaffected by the supplementation. Fatty acid composition of two epidermal sphingolipids, acylglucosylceramide and acylceramide, from the skin were determined. The results indicate that re-establishment of a low trans-epidermal water loss was associated with incorporation of linolenate into the two epidermal sphingolipids. Supplementation with columbinate resulted in relatively high amounts of this fatty acid in the investigated epidermal sphingolipids. Analysis of pooled skin specimens from a previous study in which weanling rats were fed a fat-free diet and supplemented orally with pure alpha-linolenate for 13 weeks (Hansen, H.S. and Jensen, B. (1983) Lipids 18, 682-690) revealed very little polyunsaturated fatty acid in the two sphingolipids. These rats showed increased evaporation which was comparable to that of essential fatty acid-deficient rats. We interpret these results as strong evidence for a very specific and essential function of linoleic acid in maintaining the integrity of the epidermal water permeability barrier. This function of linoleate is independent of its role as precursor for arachidonate and icosanoids.  相似文献   

9.
Arachidonic acid is the principal unsaturated acid in most membrane lipids. Membrane lipids also contain a variety of other (n-6) and (n-3) fatty acids. The amounts of (n-6) and (n-3) fatty acids in membrane lipids can be modified by dietary fat change. Our studies show that long chain (n-6) and (n-3) acids are metabolized by platelet lipoxygenase and cyclooxygenase. When cells are exposed to various agonists, a variety of unsaturated fatty acids may be released. Our studies show that they have the potential of modifying physiological function both by mediating arachidonic acid metabolism and as direct precursors for oxygenated metabolites which themselves may interact with specific receptors to regulate biological processes.  相似文献   

10.
The epidermal permeability barrier of mammalian skin is localized in the stratum corneum. Corneocytes are embedded in an extracellular, highly ordered lipid matrix of hydrophobic lipids consisting of about 50% ceramides, 25% cholesterol and 15% long and very long chain fatty acids. The most important lipids for the epidermal barrier are ceramides. The scaffold of the lipid matrix is built of acylceramides, containing ω-hydroxylated very long chain fatty acids, acylated at the ω-position with linoleic acid. After glucosylation of the acylceramides at Golgi membranes and secretion, the linoleic acid residues are replaced by glutamate residues originating from proteins exposed on the surface of corneocytes. Removal of their glucosyl residues generates a hydrophobic surface on the corneocytes used as a template for the formation of extracellular lipid layers of the water permeability barrier. Misregulation or defects in the formation of extracellular ceramide structures disturb barrier function. Important anabolic steps are the synthesis of ultra long chain fatty acids, their ω-hydroxylation, and formation of ultra long chain ceramides and glucosylceramides. The main probarrier precursor lipids, glucosylceramides and sphingomyelins, are packed in lamellar bodies together with hydrolytic enzymes such as glucosylceramide-β-glucosidase and acid sphingomyelinase and secreted into the intercelullar space between the stratum corneum and stratum granulosum. Inherited defects in the extracellular hydrolytic processing of the probarrier acylglucosylceramides impair epidermal barrier formation and cause fatal diseases: such as prosaposin deficiency resulting in lack of lysosomal lipid binding and transfer proteins, or the symptomatic clinical picture of the “collodion baby” in the absence of glucocerebrosidase. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

11.
The mammalian pineal gland is a prominent secretory organ with a high metabolic activity. Melatonin (N-acetyl-5-methoxytryptamine), the main secretory product of the pineal gland, efficiently scavenges both the hydroxyl and peroxyl radicals counteracting lipid peroxidation in biological membranes. Approximately 25% of the total fatty acids present in the rat pineal lipids are represented by arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3). These very long chain polyunsaturated fatty acids play important roles in the pineal gland. In addition to the production of melatonin, the mammalian pineal gland is able of convert these polyunsaturated fatty acids into bioactive lipid mediators. Lipoxygenation is the principal lipoxygenase (LOX) activity observed in the rat pineal gland. Lipoxygenation in the pineal gland is exceptional because no other brain regions express significant LOX activities under normal physiological conditions. The rat pineal gland expresses both 12- and 15-lipoxygenase (LOX) activities, producing 12- and 15-hydroperoxyeicosatetraenoic acid (12- and 15-HpETE) from arachidonic acid and 14- and 17-hydroxydocosahexaenoic acid (14- and 17-HdoHE) from docosahexaenoic acid, respectively. The rat pineal also produces hepoxilins via LOX pathways. The hepoxilins are bioactive epoxy-hydroxy products of the arachidonic acid metabolism via the 12S-lipoxygenase (12S-LOX) pathway. The two key pineal biochemical functions, lipoxygenation and melatonin synthesis, may be synergistically regulated by the status of n-3 essential fatty acids.  相似文献   

12.
The composition of fatty acids in human milk lipids was determined in 41 women on the 3rd, 4th, 5th and 6th days after labour by the method of gas chromatography. In these investigations no significant differences were demonstrated in the fatty acids in the lipid fractions between these consecutive days. The level of polyunsaturated fatty acids of the n-6 and n-3 groups was about 11.9-13.6%, including linoleic acid (18:2, n-6) about 7.7-9.8%, and alpha-linolenic acid (18:3, n-3) about 0.7-1%. In the analysis group of n-6 fatty acids the determined acids were: linoleic acid (18:2, n-6), gamma-linolenic acid (18:3, n-6), eicosadienoic acid (20:2, n-6), eicosatrienoic acid (20:3, n-6), arachidonic acid (20:4, n-6), docosahexaenoic acid (22:6, n-6). From the group of n-3 acids the identified ones were: alpha-linolenic acid (18:3, n-3), eicosapentaenoic acid (20:5, n-3), docosapentaenoic acid (22:5, n-3) and docosahexaenoic acid (22:6, n-3). The obtained quotients of fatty acids n-6 through n-3 on the consecutive days were: 7.2:1-7.8:1, indicating a too low level of the n-3 acids in the investigated milk. The acids prevailing in human milk lipids were: oleic (18:1, n-9) and palmitic (16:0) which accounted for 37-39% and 25-26% respectively. The polyunsaturated to saturated fatty acid ratio (P:S) ranged from 0.28 to 0.33.  相似文献   

13.
Several polyunsaturated fatty acids (C18-C22 acids) have been compared in their uptake by human platelets and their acylation into glycerophospholipid subclasses. This was also studied in the presence of linoleic and/or arachidonic acids, the main fatty acids of plasma free fatty acid pool. Amongst C20 fatty acids, dihomogamma linolenic acid (20:3(n-6)), 5,8,11-icosatrienoic acid (20:3(n-9)) and arachidonic acid (20:4(n-6)) were better incorporated. The uptake of 5,8,11,14,17-icosapentaenoic acid (20:5(n-3)) was significantly lower and comparable to that of C22 fatty acids (7,10,13,16-docosatetraenoic acid (22:4(n-6)) and 4,7,10,13,16,19-docosahexaenoic acid (22:6(n-3)) and linoleic acid (18:2(n-6)). In this respect, linolenic acid (18:3(n-3)) appeared the poorest substrate. The bulk of each acid was acylated into glycerophospholipids although the presence of linoleic and/or arachidonic acids diverted a part towards neutral lipids. This was prominent for 18:3(n-3) and C22 fatty acids. The glycerophospholipid distribution of each acid differed substantially and was not affected by the presence of linoleic and or arachidonic acids, except for 18:3(n-3) and 22:6(n-3) that were strongly diverted towards phosphatidylethanolamine (PE) at the expense of phosphatidylcholine (PC). The main features were an efficient acylation of 20:3(n-9) into phosphatidylinositol (PI) followed by 20:3(n-6) and 20:4(n-6), then by 20:5(n-3) and 22:4(n-6), and finally 22:6(n-3) and C18 fatty acids. This was reciprocal to the acylation into PE and to a lesser extent into PC which remained the main storage species in all cases. We conclude that human platelets may exhibit a certain specificity for taking up polyunsaturated fatty acids both in terms of total uptake and glycerophospholipid subclass distribution. Also the presence of polyunsaturated fatty acids of normal plasma, like linoleic and arachidonic acids, may interact specifically with such an uptake and distribution.  相似文献   

14.
The effect of dietary n-6/n-3 fatty acid ratio on alpha-tocopherol homeostasis was investigated in rats. Animals were fed diets containing fat (17% w/w) in which the n-6/n-3 ratio varied from 50 to 0.8. This was achieved by combining corn oil, fish oil, and lard. The polyunsaturated to saturated ratio and total alpha-tocopherol remained constant in all diets. Results showed that enrichment of n-3 polyunsaturated fatty acids in the diet, even at a low amount (3.9% w/w), resulted in a dramatic reduction of blood alpha-tocopherol concentration, which, in fact, is the result of a decrease in plasma lipids, since the alpha-tocopherol to total lipids ratio was not significantly altered. The most striking effect observed was a considerable alpha-tocopherol enrichment (x 4) of the heart as its membranes became enriched with n-3 polyunsaturated fatty acids. This process appeared even with a low amount of fish oil (3.9% w/w) added to the diet. Accordingly, a strong positive correlation was found between heart alpha-tocopherol and docosahexaenoic acid (r = 0.86) or docosahexaenoic acid plus eicosapentaenoic acid levels (r = 0.84). Conversely, the liver alpha-tocopherol level dropped dramatically when n-3 polyunsaturated fatty acids were gradually added to the diet. It is concluded that fish oil intake dramatically alters the alpha-tocopherol homeostasis in rats.  相似文献   

15.
Dietary alterations were used to demonstrate selective handling of fatty acids during their redistributionin vivo. Differences in the mol Per cent of individual acyl chains in the non-esterified fatty acid, acyl-coenzyme A and PhosPholiPid fractions reflected a result of relative Precursor abundance combined with enzymic selectivities. Selective distributions were observed in the utilization of individual acyl chains between 16:0 and 18:0, 18:1 and 18:2, and among 20:3, 20:4 and 20:5, 22:6 by ligase(s), hydrolase(s) and acyl-transferases. The variations in the mol Per cent of linoleate Present in the acyl-coenzyme A fraction of liver relative to that in the non-esterified fatty acids suggested anin vivo regulation of the level of linoleoyl-coenzyme A that influenced the synthesis of both arachidonoyl-coenzyme A and lipids. The greater abundance of eicosaPentaenoic acid in the free fatty acid fraction relative to that in the acyl-coenzyme A fraction may increase the ability of dietary 20: 5n-3 to be an effective inhibitor of the synthesis of Prostaglandins derived from 20:4n-6.  相似文献   

16.
ABSTRACT. Major fatty acid components of Acanthamoeba castellanii lipids extracted after growth at 30°C include myristate, palmitate, stearate and the polyunsaturates linoleate, eicosadienoate, eicosatrienoate and arachidonate, with oleate as the sole major monounsaturated fatty acid. By comparison, growth at 15°C gave increased linoleate, eicosatrienoate and arachidonate, but decreased oleate and palmitate. When the growth temperature was shifted downwards from 30°C to 15°C, increased lipid unsaturation occurred over a period of 24 h; thus decreases of oleate and eicosadienoate were accompanied by increases in linoleate, eicosatrienoate, arachidonate and eicosapentaenoate. An upwards shift from 15°C to 30°C gave negligible alterations in fatty acid composition over a similar period. At 15°C organisms rapidly use [1-14C] acetate for de novo fatty acid synthesis; stearate is converted via oleate to further desaturation and chain elongation products. Similar short term experiments at 30°C indicate only de novo synthesis and Δ9-desaturation; synthesis of polyunsaturates was a much slower process. Rapid incorporation of [1-14C] oleate at 30°C was not accompanied by metabolic conversion over two hours, whereas at 15°C n-6 desaturation to linoleate was observed. Temperature shift of organisms from 15°C to 30°C in the presence of [1-14C] acetate revealed that over half of the fatty acids in newly-synthesised lipids were saturated, but the proportions of unsaturated fatty acids increased with time until the total polyenoate components reached 17% after 22 h. A shift of temperature in the reverse direction gave a corresponding figure of 60% for polyunsaturated fatty acids. These results emphasize the importance of n-6 desaturation in the low temperature adaptation of Acanthamoeba castellanii .  相似文献   

17.
The synthesis of long chain polyunsaturated fatty acids (LCPUFA), such as eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), involves fatty acyl desaturase and elongase enzymes. The marine fish species southern bluefin tuna (SBT) can accumulate large quantities of omega-3 (n-3) LCPUFA in its flesh but their capacity to synthesize EPA and DHA is uncertain. A cDNA, sbtElovl5, encoding a putative fatty acyl elongase was amplified from SBT liver tissue. The cDNA included an open reading frame (ORF) encoding 294 amino acids. Sequence comparisons and phylogenetic analyses revealed a high level of sequence conservation between sbtElovl5 and fatty acyl elongase sequences from other fish species. Heterologous expression of the sbtElovl5 ORF in Saccharomyces cerevisiae confirmed that it encoded a fatty acyl elongase capable of elongating C18/20 polyunsaturated fatty acid (PUFA) substrates, but not C22 PUFA substrates. For the first time in an Elovl5, the substrate competition occurring in nature was investigated. Higher activity towards n-3 PUFA substrates than omega-6 (n-6) PUFA substrates was exhibited, regardless of substrate chain length. The sbtElovl5 preferentially elongated 18:4n-3 and 18:3n-6 rather than 20:5n-3 and 20:4n-6. The sbtElovl5 enzyme also elongated saturated and monounsaturated fatty acids.  相似文献   

18.
Ceramides are vital components of the water barrier in mammalian skin. Epidermis-specific, a major ceramide portion contains omega-hydroxy very long chain fatty acids (C30-C36). These omega-hydroxy ceramides (Cers) are found in the extracellular lamellae of the stratum corneum either as linoleic acyl esters or protein bound. Glucosylceramide is the major glycosphingolipid of the epidermis. Synthesized from ceramide and UDP-glucose, it is thought to be itself an intracellular precursor and carrier for extracellular omega-hydroxy ceramides. To investigate whether GlcCer is an obligatory intermediate in ceramide metabolism to maintain epidermal barrier function, a mouse with an epidermis-specific glucosylceramide synthase (Ugcg) deficiency has been generated. Four days after birth animals devoid of GlcCer synthesis in keratinocytes showed a pronounced desquamation of the stratum corneum and extreme transepidermal water loss leading to death. The stratum corneum appeared as a thick unstructured mass. Lamellar bodies of the stratum granulosum did not display the usual ordered inner structure and were often irregularly arranged. Although the total amount of epidermal protein-bound ceramides remained unchanged, epidermal-free omega-hydroxy ceramides increased 4-fold and omega-hydroxy sphingomyelins, almost not detectable in wild type epidermis, emerged in quantities comparable with lost GlcCer. We conclude that the transient formation of GlcCer is vital for a regular arrangement of lipids and proteins in lamellar bodies and for the maintenance of the epidermal barrier.  相似文献   

19.
Abstract: We observed that retinoic acid, which differentiates the human neuroblastoma SK-N-BE into mature neurons, induced an elevation in levels of polyunsaturated fatty acids, especially arachidonic acid (20:4 n-6). This effect was not induced by phorbol myristate acetate, another differentiating agent. We then explored the effects of retinoic acid on the formation of arachidonic acid and of docosahexaenoic acid from precursors and on the de novo lipid synthesis from acetate at various stages of differentiation, which was assessed by morphological (cell number and neurite outgrowth) and biochemical (protein content and thymidine incorporation) criteria. At 3 days of incubation with retinoic acid, in the n-6 series, total conversion of linoleic acid, especially to 20:3 n-6, was elevated, in association with preferential incorporation of acetate into phospholipids; in contrast, at 8 days, synthesis of 20-carbon polyunsaturated fatty acids declined, in association with enhanced incorporation in triglycerides. In the n-3 series, eicosapentaenoic acid was converted to docosahexaenoic acid in SK-N-BE, but the conversion was not affected by retinoic acid. During the early stage of neuronal differentiation, therefore, enhanced production of 20-carbon polyunsaturated fatty acids from their precursors occurred, and newly formed fatty acids were preferentially incorporated in phospholipids, possibly in association with membrane deposition. When differentiation was completed, arachidonic acid formation and incorporation of acetate in phospholipids and cholesterol declined with enhanced labeling of storage lipids.  相似文献   

20.
We have enriched human fibroblasts with oleic acid, with linoleic acid and with eicosapentaenoic acid. The accumulation of cholesteryl esters in the cells and the rate of esterification of cholesterol by microsomal acyl-CoA:cholesterol acyltransferase (ACAT) were measured in these cells. Cholesteryl ester levels were lower in cells enriched with eicosapentaenoic acid compared with cells enriched with oleate or linoleate. We also observed significantly lower ACAT activities in the microsomes from fibroblasts enriched with the n-3 polyunsaturated fatty acids relative to cells enriched with oleic acid or linoleic acid. We suggest that the presence of n-3 polyunsaturated fatty acids might suppress cholesteryl ester accumulation and inhibit atherogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号